摘要本文重点介绍了带通(BP)负数组延迟(NGD)功能的时间域分析。创新的NGD调查基于“ lill” - 形状被动微带电路的创新拓扑的时域实验。描述了特定微带形状构成的概念证明(POC)的设计原理。NGD电路的灵感来自最近分布的“ Li” - 拓扑。在时间域调查之前,研究了所研究电路的BP NGD规格是学术上定义的。作为基本定义的实际应用,本文的第一部分介绍了“ lill” - 电路的频域验证。POC电路是由2.31 GHz NGD中心频率和27 MHz NGD带宽的-8 NS NGD值指定的。“ Lill” - 电路的衰减损失约为-6。在NGD中心频率下 2 dB。 然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。 测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。 在NGD中心频率处为1 ns。 使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。 可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。 可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。2 dB。然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。在NGD中心频率处为1 ns。使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。通过使用具有27 MHz频率带宽的高斯向上转换的脉冲,使用测量的“ Lill”电路的Touchstone S-参数从商业工具模拟中理解了BP NGD时间域响应。但是,当将载体调谐为大约等于2.31 GHz NGD中心频率时,输出信号包络线在大约-8 ns中。确认BP NGD响应的时间域典型行为,在测试期间考虑了具有高斯波形的输入脉冲信号。但是,必须在NGD带宽的功能中确定输入信号频谱。在测试后,与输入相比,测量的输出信号信封显示前缘,后边缘和时间效率的峰值。当前可行性研究的结果开放了BP NGD功能的潜在微波通信应用,特别是对于使用ISM和IEEE 802.11标准运行的系统。
在大脑中表达,尤其是在基底神经节中。其激活调节食物摄入量[7],并支持认知,抗焦虑和抗抑郁作用[8,9]。5-HT 4 R激动剂治疗人类中的慢性特发性结构[10]并改善记忆[11]。5-HT 4 R表达在异常食物摄入,情绪障碍和认知降低中有意改变[12-14]。令人惊讶的是,很少有研究集中在PD中的5-HT 4 R上,而无数的PD非运动症状commosempassessuchuchmaniftations [15,16]。作为第一个步骤,我们想知道使用大鼠和非人类灵长类动物(NHP)模型的现有脑库组织补充DA耗竭和L-DOPA后的纹状体5-HT 4 R是否会增加。然后,我们在第二个NHP中研究了其体内宠物成像调节。
基于RF-squids的Josephson行动波参数放大器的实验表征利用共振相位匹配方案 / Fasolo,L。;阿伦斯(Ahrens),f。; Avallone,G。;男爵,c。 Borghesi,M。; Callegaro,L。; Carapella,G。;加载,A。P。; Carusotto,i。 Cian,A。; D'Elia,A。; Gioacchino,D。 Falferi,p。; Faverzani,M。; Ferri,E。; Filatrella,G。;猫,c。 Giubertoni,d。; Granata,V。; Guarcello,c。 Labranca,d。;狮子座,a。; Ligi,c。; Livreri,P。; Maccarrone,G。; Mantegazzini,f。; Margesin,b。 Maruccio,G。; Mezzena,r。 Montediro,A。G。; Moretti,R。 nucciotti,a。; Oberto,L。; Origo,L。; Pagano,s。; Piedjou,A。S。; Piersanti,L。; Rettaroli,A。; Rizzato,S。; Tocci,s。; Vante,A。; Zannoni,M。; Giachero,A。; Enrico和..- in:IEEE超导性的IEEE交易。- ISSN 1051-8223。-34:3(2024),p。 1101406。[10.1109/tasc。 2024.3359163]
摘要 - 本文专用于在锂离子电池单元的规模上使用PCM金属泡沫复合材料设计最佳热管理系统。研究了PCM和PCM金属泡沫复合材料吸收由锂离子细胞产生的热量的能力,开发了数学和数值模型。该建模基于从CERTES实验室中开发的新实验测试工作台进行的表征实验收集的数据。为了表征锂离子细胞的热行为,开发的二维数值模型集成了Brinkmann-Forchheimer扩展的Darcy方程,焓孔隙率法和二元能量方程。数值研究是通过耦合MATLAB和COMSOL多物理学进行的。结果表明,添加铝泡沫可以对细胞进行更有效的热管理。优化研究表明,低估厚度(所需的PCM质量)会导致极端温度。还发现,额外的PCM添加对细胞表面温度没有很大影响。
脱位密度。那些不同的方法不观察到相同类型的位错,即统计存储的位错(SSD)和/或几何必需的脱位(GND)。有些是直接测量技术,例如ECCI和TEM成像,而其他是非方向方法,即HR-EBSD和XRD测量。因此,提出了使用这四种技术在未变形和变形的双链钢上获得的测量值的定量比较。对于低变形,位错密度很小(成像方法相当性能,而XRD 1- 5×10 13 m - 2),测量值的不确定性水平高。HR-EBSD测量结果表明,结果与这些变形水平的其他方法非常吻合。对于较高的变形水平(上面的脱位密度),成像方法不再相关,因此1 - 3×10 14 m - 2
糖尿病是一种碳水化合物代谢疾病,其特征是人体对产生胰岛素的反应并保持合适的血糖水平。这是与许多功能和结构代谢并发症有关的主要健康问题。糖尿病并发症包括生酮发生,糖生成以及心脏病发作和中风的风险增加(Samoo等,2018)。根据国际糖尿病联合会的说法,2003年约有1.94亿人患有糖尿病,2025年将增加到3.33亿。有两种主要类型的糖尿病类型:类型1(TD1,胰岛素依赖性或少年糖尿病)和2型(TD2,非胰岛素依赖性糖尿病)。据估计,所有糖尿病患者中有90%以上患有T2D(Islam and Choi 2008)。糖尿病都存在于世界上发达和欠发达国家。在低收入国家和中等收入国家中,糖尿病患者的数量将从8400万增加到2.28亿,而这些人数将从高收入国家(HIC)(HIC)的2100万人增加到7200万。假定在2025年底,约有70%的糖尿病比属于HIC(Ashraf等,2011)。
ISIS Criouet,Jean-Christophe Viennet,Etienne Balan,Fabien Baron,Arnaud Buch等。iCarus,2023,406,pp.115743。10.1016/j.icarus.2023.115743。hal-04300810
摘要综合电路的可靠操作可能会受到环境变化的影响,例如多频电磁(EM)干扰和温度变化。本文比较了两个振荡器电路的性能,即恒定的电压控制的振荡器和一个集成到芯片中的环振荡器,这是在对多电源直接功率注入的情况下,而在热应力影响下。目的是通过测量方法来证明测试芯片中多电极EM扰动引起的协同作用,与常规的单色调EM扰动相反。此外,在极端温度偏差下分析了具有不同架构但功能相似功能的集成块的多节免疫力水平。贝叶斯网络(BN)被应用,以可视化由于多节扰动和温度影响而引起的电路故障的概率。此外,还实施了嘈杂的或改进的自适应回复 - 核(I-arnor)概率模型以识别因果相互作用的类型(即抑制和正因果关系)多节障碍和分别预测由于高阶多型多型扰动而导致的失败概率。
为了模拟原位 Z TH,ja 提取,对安装在 PM 上的其中一个设备采用了“模拟实验”策略。该过程如下:•首先,通过 COMSOL Multiphysics 环境中的详细纯热 3-D FEM 模拟获得设备的参考 Z TH,ja [24],其中重现了 PM 的精确复制品(图 3)。边界条件通过施加于厚铜底板底面的传热系数 h =2×10 3 W/m 2 K 来解释,这描述了与高效散热器的接触 [25]。•获得的参考 Z TH,ja 用于构建具有 Foster 拓扑的 SPICE 兼容热反馈网络 (TFN) [26];然后将 TFN 耦合到 VDMOS 晶体管的电气模型,该晶体管的温度敏感参数可以在模拟运行期间发生变化。电气模型根据实验数据 [27] 进行了校准,并在 [28] 中进行了详细描述。• 使用 OrCAD Capture 软件包 [29] 对 ET 模型进行了瞬态模拟,以模拟第 II.B 节中介绍的实验程序来提取 z ja 。• 通过在 COMSOL 中模拟 300 K 等温背面的裸片器件来确定 Z jc 。• 然后进行反归一化过程和时域转换以获得热阻抗 Z TH,ja 。• 最后比较了参考值和提取的 Z TH,ja 。
