蛋白质语言模型(PLM)已成为用于蛋白质序列设计的最先进工具。plms并没有固有地设计具有超出自然界的功能的新序列,这表明了与蛋白质工程的未对准,该目标是重新设计具有增强功能的蛋白质序列的蛋白质工程目标。在自然语言处理领域,通过人类反馈(RLHF)的强化学习使大型语言模型Chat-gpt通过监督的微调(SFT)和近端政策优化(PPO)使首选响应一致。我们使用实验数据适应了SFT和PPO来对PLM的功能排列,并使用实验反馈(RLXF)调用此方法增强学习。我们使用RLXF将ESM-2和生成的变分自动编码器对齐,以设计与氧无关的荧光蛋白Creilov的5个突变体变体。我们发现,对齐的ESM-2的设计较大,具有活性,至少与Creilov一样明亮,并带有体内荧光测定。我们将RLXF作为一种多功能方法,用于使用实验数据重新设计实验数据在功能上对齐PLM。
摘要:日益增加的环境问题和对可持续材料的需求促使人们专注于在添加剂制造中利用回收的聚乳酸(PLA),因为PLA提供了比其他热塑性的优势,包括生物降解性,易于生物降解性,易于加工和生产过程中的环境影响较低。本研究通过实验和机器学习方法的结合探讨了回收PLA零件的机械性能的优化。进行了一系列实验,以研究各种处理参数(例如层厚度和填充密度和退火条件)对回收PLA部分机械性能的影响。机器学习算法已经证明,平均误差为6.059%,可以预测拉伸行为。结果表明,处理参数和治疗后退火的特定组合不同地改善了机械性能(最终拉伸强度(UTS)为7.31%,Young模量为0.28%,在延长度中为3.68%)和3.68%的延长度),并根据XD vra(X.33%)的效果,依赖于XD的vira,并在XD上进行分析,该分析均为A a vira vra vra,in It a vira是xrd vra,in It a vira是xrd vra vra vra vra。可持续包装解决方案,包括可生物降解的容器,翻盖包装和保护性插件。优化的回收PLA零件表现出机械性能和结晶度水平,其水平与其处女相媲美,这突出了它们降低环境影响和节省成本的潜力。均为已建造的样品和退火样品,实现高复合可需性的最佳设置涉及0.2 mm的层厚度,填充物的填充量为75%,用于填充样品,对退火样品的填充填充物为100%。本研究提供了一个综合框架,用于优化添加剂制造中的再生PLA,这有助于可持续材料工程和循环经济的发展。
五年前,恶意软件分类论文中近乎完美的𝐹 1 分数趋势引发了人们的疑问:Android 恶意软件分类是否已解决。恶意软件分类实际上并非已解决的问题,近乎完美的性能是时空偏差的结果。Tesseract 的开发旨在允许对恶意软件分类器进行不受空间和时间偏差影响的实际评估。Tesseract 发布后,它成为如何进行公平恶意软件分类评估的基准,影响了后续论文的实验设计,迄今为止已有 415 次引用。Tesseract 被实现为一个 Python 库,旨在轻松与常见的 ML 工作流程集成。Tesseract 的设计深受流行的机器学习算法的启发,并且与之完全兼容。
该课程旨在为学生提供实验技能,并对各种可持续工程技术进行进一步的实践欣赏。作为基于实验的课程,该课程还将在数据收集中赋予基本技能,对实验数据的批判性分析对报告写作的良好实践。通过本课程,学生将通过实验实践来弥合理论知识。
在当前的工作中,直接接触制冷剂,并使用细胞进行热管理。这项研究通过允许制冷剂直接接触细胞来实验研究对电池组的冷却。此外,它提出了将这种方法与各种主动和被动冷却方法相结合的第一个实验评估。根据结果,在放电结束时,细胞的最高温度降低了34°C。在拟议的系统中,散热器是通往环境的唯一传热路径。传热是通过自由对流发生的。为了增强散热器的热量耗散,该系统与主动或被动的电池热管理系统(BTMS)结合使用。使用水凝胶之间的水凝胶在散热器的鳍之间降低了细胞的最大温度0.5°C。但是,在散热器的鳍之间使用强制气流不会影响细胞的最高温度。还将提出的系统与主动强制液体冷却系统结合使用,并研究了各种水流量。在200 lph的流速下,与没有强迫水流的模式相比,细胞的最高温度降低了1.5°C。此外,还检查了不同的入口水温,表明升高入口水温会导致细胞最高温度的显着升高。
使用 TR-FRET 评估 ABBV-453 对重组人 MCL-1、BCL-2 和 BCL-X L 的亲和力,并确定与重组 BAK 复合的每种蛋白质的抑制常数 (Ki)。用含有 10% HS 的培养基中的 ABBV-453 处理人类肿瘤细胞系 H929、Molt-4 和 RS4;11 细胞 24 小时,并根据制造商的说明使用 CellTiter-Glo 确定对活力的影响 (Promega)。根据所得剂量反应曲线计算每个 EC 50 (半最大有效浓度)。数据以三到七次独立实验的平均值 ± 标准差表示。
图4。交叉反应性以及对人和cynomolgus猴子靶标的体外生物活性。(a)KD值通过表面播种共振测量。(b)通过CYNO CD16 +或人类CD56 + CD16 +效应细胞从人类供体中动员细胞中CD34 +动员细胞的体外杀死。图显示了在MP0621存在的情况下以E:T比5:1的24 h共培养时的靶细胞裂解。两个独立实验的代表性示例。(c)使用工程设计的目标细胞测量CD47的CKIT依赖性条件阻滞,以表达cynomolgus猴子CKIT和/或CD47(CHO-CKIT/CCD47或CHO-CCD47或CHO-CCD47)或CHO CHO细胞表达人类靶标(CHO-HCKIT/HCKIT/HCKD/HCD47或CHO-HCD47)。与MP0621和洗涤孵育后,将生物素化的α-CD47检测剂添加到细胞中,然后将链霉亲和素AF647添加到细胞中。获得的信号反映了细胞表面上可用的游离CD47的水平。
腐蚀是材料与环境相互作用而产生的降解,对大多数金属而言,腐蚀是不可避免的 (Barbara et al., 2006)。腐蚀可以定义为金属与周围环境发生化学或电化学反应而产生的破坏性侵蚀。腐蚀是一种代价高昂的自然破坏过程,与地震等自然灾害非常相似 (Winston et al., 2008)。然而,与这些自然灾害不同,腐蚀可以通过适当的措施来控制或预防。金属腐蚀通常通过电化学机制发生,金属原子由于金属与环境之间形成的电路而被去除。此外,腐蚀也可能由于与气体发生反应或暴露于高温、细菌、辐射而发生,
引入3D打印已彻底改变了不同复杂晶格结构的设计和制造,从而提供了前所未有的灵活性,以优化各种应用的机械性能。但是,传统的3D打印晶格结构通常会在实现强度,刚度和体重之间达到所需的平衡时面临一些局限性。这项研究通过创新的设计修改对常规3D打印晶格结构的增强进行了全面研究。通过将高级计算技术(例如有限元方法(FEM)建模与实验研究)整合在一起,本研究旨在评估这些增强结构的机械性能。FEM分析允许精确预测压力分布和压缩负载条件下的变形,而实验验证则提供了对现实世界中适用性和性能的见解。结果表明,体重不是影响机械规格的主要因素,这是该研究通过获得的结果的主要假设,这表明与SC-FCC相比,在修改的模型中,将重量降低了12%,与SC-FCC相比,修改的模型比SC-BCC的重量比SC 11.7 G的重量更轻,并且与SC-BCC结构相比,重量为10.32 G较轻。这些发现揭示了机械性能的显着改善,包括增加负载能力,证明了这些增强的晶格结构对高级工程应用的潜力。这项研究不仅有助于理解3D打印的晶格的机械行为,而且还为开发更有效,更健壮的结构组件铺平了道路。
摘要:21 世纪实验结构生物学面临的挑战之一是观察化学反应的发生。金黄色葡萄球菌 (S. aureus) DNA 旋转酶是一种 IIA 型拓扑异构酶,可产生暂时的双链 DNA 断裂来调节 DNA 拓扑结构。吉泊汀、佐利氟达星和喹诺酮类莫西沙星等药物可以稳定这些通常短暂的 DNA 链断裂并杀死细菌。在相同的 P6 1 空间群 (a = b ≈ 93 Å,c ≈ 412 Å) 中,已解析出含有吉泊汀前体 (2.1 Å GSK2999423) 或双裂 DNA 和佐利氟达星 (或其前体 QPT-1) 的未裂解 DNA 的晶体结构。这表明可能可以观察到该 P6 1 空间群中的两个 DNA 切割步骤(和两个 DNA 连接步骤)。这里,解决了这种晶体形式的 2.58 Å 异常锰数据集,并重新细化了这种晶体形式的四个先前的晶体结构(1.98 Å、2.1 Å、2.5 Å 和 2.65 Å)以阐明晶体接触。这些结构清楚地表明了单一移动金属机制——在附带的(第二篇)论文中提出。先前发表的酵母拓扑异构酶 II 的 2.98 Å 结构,它在晶体二重轴周围具有静态无序,被发表为在一个活性位点包含两种金属。这个 2.98 Å 酵母结构的重新细化坐标与其他 IIA 型拓扑异构酶结构一致,在两个不同的活性位点各只有一个金属离子。