引言:经典计算是一种极为成功的信息处理范式。计算的成功很大程度上可以归因于计算能力的快速提升,而计算能力的快速提升得益于由经典不可逆门操作构建的底层电路的小型化(参见图 1(a))。如今,经典处理器门数的指数增长已达到基本物理极限 [1]。在不断追求提高计算能力的过程中,人们正在探索多种替代技术 [2–13]。作为一种与经典信息处理正交的方法,量子计算最近受到了广泛关注。在此方面,人们已经取得了实质性进展,首次展示了量子纠错等基本要素 [14–19]。这可以归因于新颖、先进的提案以及成熟技术的持续改进 [20–24]。这些进步使量子计算更接近于完全单一演化到输出状态的理想。然而,在某些算法中,非单一操作需要与单一量子门结合使用。其中包括量子机器学习、量子优化和模拟算法,这些算法被认为是量子计算最有前途的近期应用之一。
图 1 人类与非人类物种之间共享的基因。系统发育树标注了每个物种中具有 1:1 直系同源物的人类基因百分比(以数字和每个圆圈的填充比例显示)。与人类共享的 1:1 直系同源物的绝对数量绘制为每个圆圈的颜色。使用 orthogene R 包构建。92 关键词:Anolis carolinensis,绿变色蜥;Bos taurus,牛;Caenorhabditis elegans,蛔虫;Canis lupus familiaris,狗;Danio rerio,斑马鱼;Drosophila melanogaster,果蝇;Equus caballus,马;Felis catus,猫;Gallus gallus,鸡;Homo sapiens,人类;Macaca mulatta,恒河猴;Monodelphis domestica,灰色短尾负鼠;小家鼠 (Mus musculus),家鼠;鸭嘴兽 (Ornithorhynchus anatinus),鸭嘴兽;黑猩猩 (Pan troglodytes),黑猩猩;褐家鼠 (Rattus norvegicus),褐家鼠;酿酒酵母 (Saccharomyces cerevisiae),面包酵母;粟酒裂殖酵母 (Schizosaccharomyces pombe),裂殖酵母;野猪 (Sus scrofa),猪;热带爪蟾 (Xenopustropicalis),西方爪蟾。
欧盟最近的立法和政策举措旨在提供灵活、创新友好且面向未来的监管框架。主要例子是欧盟人工智能协调计划和最近发布的欧盟人工智能监管提案,它们提到了试验监管沙盒的重要性,以便在人工智能创新与潜在风险之间取得平衡。监管沙盒最初是在金融科技领域开发的,通过放弃其他适用规则、指导合规性或定制执行,为选定数量的创新项目创建了一个试验台。尽管关于监管沙盒和人工智能监管的文献不断涌现,但监管沙盒的法律、方法和道德挑战仍然研究不足。这篇探索性文章深入探讨了在人工智能监管背景下采用实验性法律手段的一些好处和复杂性。本文的贡献有两方面:首先,它将监管沙盒的采用置于更广泛的实验性监管方法讨论中;其次,它对人工智能监管沙盒的设计和实施未来步骤进行了反思。
根据其章程,AGARD 的使命是将北约国家在航空航天科学技术领域的领军人物聚集在一起,以实现以下目的: - 为成员国推荐有效的方式,以便利用其研究和开发能力造福北约社区; - 向军事委员会提供航空航天研究和开发领域的科学技术建议和援助(特别是在军事应用方面); - 不断促进与加强共同防御态势相关的航空航天科学进步; - 改善成员国在航空航天研究和开发方面的合作; - 交流科学技术信息; - 向成员国提供援助,以提高其科学技术潜力; - 根据要求向其他北约国家提供科学技术援助
1 简介 关于风洞测试室的讨论文献有限。主要原因是测试室静态对称,设计简单,横截面积为圆形、方形或矩形,也与已经从收缩室流向测试室的流体有关 [1]。结合空气动力学测试、湍流研究或风工程方面的文章,表明风洞在提供数据以分析样品和流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试粒子的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因发热而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩
要评估现代飞机和飞机系统,需要了解如何优化空气动力学性能。如今的性能规格远远超出了点设计规格,并且在很大程度上取决于优化以满足特定的战术要求,无论飞行器是设计为拦截器、空中优势战斗机、战略空运机、战略轰炸机还是任何其他作战角色。目标是要求性能效率覆盖整个飞行范围,以最佳的武器、发动机和机身整体组合满足作战需求。F-14 和 F-15 是第一代采用这种方法设计和评估的战斗机。F-16、F-18、龙卷风和幻影 2000 等较新的战斗机设计都是在充分认识到优化性能需求的情况下构思的。
本文重点介绍集成在新型变形机翼应用的执行机构中的电动微型执行器的建模、仿真和控制。变形机翼是现有区域飞机机翼的一部分,其内部由翼梁、纵梁和肋条组成,结构刚度与真实飞机的刚度相似。机翼的上表面是柔性蒙皮,由复合材料制成,并经过优化以满足变形机翼项目要求。此外,机翼上还附有一个可控刚性副翼。执行机构的既定架构使用四个类似的微型执行器,固定在机翼内部并直接驱动机翼的柔性上表面。执行器是内部设计的,因为市场上没有可以直接安装在我们的变形机翼模型内的执行器。它由一个无刷直流 (BLDC) 电机、一个变速箱和一个螺旋桨组成,用于推动和拉动机翼的柔性上表面。电动机
前言。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5 1 制图方法和主要结果(Gábor Papanek、Katalin Dévai 和 Balázs Borsi)。 。 。 。 。 。 。 6 1.1 目标和方法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 ................................................................................................................................................................................................................. 6 1.2 目标原因:中欧和东欧悖论 ................................................................................................................................................................................. 9 1.3 RTDI 专业化和空间特征 ....................................................................................................................................................................................................................... 11 1.4 RECORD 卓越阶梯 ................................................................................................................................................................................. ................. ... . ... . .... .... .... 21 2.2 捷克共和国的卓越中心(Adolf Filacek 和 Jirˇí Loudín). .... .... .... .... .... .... .... 24 2.3 布拉格捷克技术大学的卓越中心:控制论系(Jirˇí Loudín). .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... 25 2.4 捷克科学院发展科学园区:分子和遗传生物技术中心(Jirˇí Loudín) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 匈牙利。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 49 3.1 匈牙利的创新研发机构(Balázs Borsi 和 Gábor Papanek)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 49 3.2 匈牙利卓越中心(Balázs Borsi 和 Gábor Papanek)。 。 。 。 。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................................. 72 4 马耳他 ........................................................................................................................................................................................................................ ... 74 4.3 马耳他生物技术研究公司案例研究:细胞药理学研究所有限公司(Joseph Micallef 和 Brian Restall). ... . ... ... 91 5.4 波兰卓越中心案例研究:基础技术研究中心(IPPT)作者:Julita Jablecka .................................................................................................................................................. 101 5.5 VIGO SYSTEM:波兰高科技公司案例研究(Amir Fazlagic´).................................................................................................................................................. 113 附件:波兰地区的经济和研发(Slawomir Dudek).................................................................................................................................................................................. 120
Liu He , a Zhihao Lan , b, * Bin Yang, c Jianquan Yao, a Qun Ren, d,e Jian Wei You, e Wei E. I. Sha , f Yuting Yang, c, * and Liang Wu a, * a Tianjin University, Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology Tianjin, China b University College London, Department of Electronic and Electrical Engineering, London, United Kingdom c University of Mining and Technology, School of Materials Science and Physics, Xuzhou, China d Tianjin University, School of Electrical and Information Engineering, Tianjin, China e Southeast University, School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Nanjing, China f Zhejiang University, College of Information Science and Electronic工程,中国杭州省微型电子设备和智能系统的主要实验室
9.4.2.2 a', 的增加。348 9.4.3 a', 的经验相关性。变化 351 9.4.4 关于 60', 关系的一般评论。354 9.5 界面摩擦角 .................................................... 355 9.6 Ra' 和 a' 相关性的含义..................................... 358 9.7 与其他现场测试结果的比较 ........................................ 360 9.7.1 压缩下的轴承载力 360 9.7.2 拉伸下的轴承载力 362 9.7.3 与其他桩设计方法的比较 365 9.8 最终结果。Co1 u i!。错误................................................................ 366