随着学年的结束,危机显然还将继续,我们需要以不同的方式思考 2020-2021 学年。经过深思熟虑的规划,北边预科学院为家庭提供了三种学习选项,无论学生的年级如何,这些选项都在开学第一天实施。这三个选项让家庭能够考虑学生的健康状况、他们对社区当前 COVID-19 状况的适应程度、他们在家促进学习的能力或兴趣以及许多其他重要因素。家庭被要求在开学前做出选择,并继续采用这种方式直到第一学期结束。我们的学校领导团队可以随时满足家庭更改选项的请求。如果学校的健康状况发生变化,或州长颁布了关闭命令,所有学生都可以立即转向选项 3。
随着学年的结束,危机显然还将继续,我们需要以不同的方式思考 2020-2021 学年。经过深思熟虑的规划,West Park Academy 为家庭提供了三种学习选项,无论学生的年级如何,这些选项都在开学第一天实施。这三个选项让家庭能够考虑学生的健康状况、他们对社区当前 COVID-19 状况的适应程度、他们在家促进学习的能力或兴趣以及许多其他重要因素。家庭被要求在开学前做出选择,并继续采用这种方式直到第一学期结束。我们的学校领导团队可以随时满足家庭更改选项的请求。如果学校的健康状况发生变化,或州长颁布了关闭命令,所有学生都可以立即转向选项 3。
随着学年的结束,危机显然还将继续,我们需要以不同的方式思考 2020-2021 学年。经过深思熟虑的规划,林肯公园学院为家庭提供了三种学习选项,无论学生的年级如何,这些选项都在开学第一天实施。这三个选项让家庭能够考虑学生的健康状况、他们对社区当前 COVID-19 状况的适应程度、他们在家促进学习的能力或兴趣以及许多其他重要因素。家庭被要求在开学前做出选择,并继续采用这种方式直到第一学期结束。我们的学校领导团队可以随时满足家庭更改选项的请求。如果学校的健康状况发生变化,或州长颁布了关闭命令,所有学生都可以立即转向选项 3。
扩展数据图 1. 使用 RFdiffusion 设计 β 链配对支架。为了充分利用 RFdiffusion 的多样化生成潜力,同时鼓励在设计输出中使用 β 链界面,我们实现了一种界面调节算法,该算法可根据简单的用户输入生成 SS/ADJ 调节张量。该模型以张量的形式理解折叠调节,这些张量标记每个残基(a,顶部和左侧)的二级结构(蓝色)以及这些二级结构块的邻接关系(a,黄色中心)。用户指定的参数指定了以下信息:结合剂界面二级结构块(在本例中为 β 链)、该块的长度(b,结合剂张量 L 中的青色块)以及结合剂块相邻的靶位残基(b,靶位张量 T 中的青色块)。根据这些预定义参数,该算法随机采样结合剂界面二级结构块在残基索引空间中的位置,同时保持与指定靶位残基的确定邻接关系(绿色)。该用户定义的调节张量将扩散输出导向β链配对的结合物-靶标界面 (c)。此前,RFdiffusion 界面设计计算可以针对指定为靶标“热点”的特定残基,以指定要结合的靶标残基。而这种新的链间 SS/ADJ 调节功能,使用户能够在结合物支架生成过程中指定“β链热点”或“ɑ-螺旋热点”。基于扩展的结合物-靶标 SS/ADJ 张量调节的结合物支架输出,支持用户指定 β 链界面类型的设计。
随着学年的结束,危机显然还会持续,我们需要以不同的方式思考 2020-2021 学年。经过深思熟虑的规划,克利夫兰艺术与社会科学学院为家庭提供了三种学习选项,无论学生的年级如何,这些选项都在开学第一天实施。这三个选项让家庭能够考虑学生的健康状况、他们对社区当前 COVID-19 状况的适应程度、他们在家促进学习的能力或兴趣以及许多其他重要因素。家庭被要求在开学前做出选择,并继续采用这种方式直到第一学期结束。我们的学校领导团队可以随时满足家庭更改选项的请求。如果学校的健康状况发生变化,或州长颁布了关闭命令,所有学生都可以立即转向选项 3。
在关于国际废物贸易的辩论中,对资源效率和回收利用的关注逐渐开始伴随着否定环境外部性的关注。在这种情况下,我们研究了扩展生产者责任(EPR)对废物蝙蝠出口(WB)的影响。EPR被认为是“废物市场化”的关键政策。另一方面,WB是一种危险废物,也含有高浓度的关键原材料。因此,它们对于恢复关键资源的战略重要性,同时需要适当的环境管理。因此,对于处理WB的情况以及如何影响相关策略的情况至关重要。我们的结果基于重力框架中的差异差异模型,在EPR实施与其他废物的趋势相结合后,WB出口显示出一致的增加。此结果可能是间接的
摘要:我们表明,通过扩展主动推理框架,可以在目的论框架中制定目标导向的行动规划和生成。所提出的模型建立在变分递归神经网络模型上,具有三个基本特征。这些特征是:(1)可以为静态感官状态(例如要达到的目标图像)和动态过程(例如围绕物体移动)指定目标;(2)该模型不仅可以生成目标导向的行动计划,还可以通过感官观察来理解目标;(3)该模型根据从过去的感官观察推断出的当前状态的最佳估计,为给定目标生成未来的行动计划。通过在模拟移动代理以及执行对象操作的真实人形机器人上进行实验来评估所提出的模型。
从 2020 年 3 月开始,由于 COVID-19 疫情,美国和世界的教育发生了巨大变化。随着学年的结束,危机显然会持续下去,我们需要以不同的方式思考 2020-2021 学年。经过深思熟虑的规划,刚刚重新开学的乔治·沃伊诺维奇高中为家庭提供了一个虚拟选项,无论学生的年级如何,该选项在开学第一天实施。这让家庭能够考虑学生的健康状况和他们对社区当前 COVID-19 状况的适应程度,以及他们在家学习的能力或兴趣以及许多其他重要因素。已入学的家庭被告知,我们将全年采用虚拟形式。
石墨烯纳米纤维(GNR)由于通过边缘结构和色带宽度的变化来精确调整电子性能的潜力,因此在纳米电子学上引起了显着关注。然而,GNR与高度渴望的锯齿形边缘(ZGNR)的合成,对旋转和量子信息技术至关重要,仍然具有挑战性。在这项研究中,提出了用于合成一类称为边缘延伸ZGNRS的新型GNR类的设计主题。此基序可以定期沿曲折边缘的边缘扩展进行控制。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。 所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。 此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。与融合到功能区轴交替侧面的双斜烯单元的特定GNR实例(3- Zigzag行宽的ZGNR)的合成。所得的边缘延伸的3-ZGNR使用扫描探针技术以其化学结构和电子性能进行了全面的特征,并取决于密度功能理论计算。此处展示的设计主题为综合各种边缘扩展的ZGNR范围开辟了新的可能性,扩大了GNR的结构景观,并促进了其结构依赖性电子特性的探索。