•在卫生部创建州气候健康计划(110万美元),以建立能力和专业知识,支持通信的发展和实施(警告系统和文化上适当的健康教育),增加社区参与,提供培训和技术援助,并改善机构间协作。•建立极端天气弹性基金(1200万美元),以协助并使地方和部落社区为与气候变化相关的公共卫生风险和威胁做好准备和应对。至少50%将专门用于小社区。赠款最多将达到100万美元(无需比赛),可用于利用联邦或其他资金。
•FERC,NERC和地区实体人员报告2023年10月:2022年12月在冬季风暴Elliott期间对散装系统运营进行调查。[在线]。可用:https://www.ferc.gov/news-events/news/ferc-news/ferc-nerc-release-final-report-report-leston-winter-winter-storm-storm-elliott•冬季风暴Elliott Elliott活动分析和建议报告。[在线]。Available: https://pjm.com/-/media/library/reports-notices/special-reports/2023/20230717-winter-storm-elliott-event-analysis-and-recommendation-report.ashx • FERC-NERC-reginal entity staff report: The February 2021 cold weather outages in Texas and the south-central united states.[在线]。可用:https://www.ferc.gov/media/february-2021-cold-weather-weather-----texas-texas-and-south-central----------------------------------------••报告西南寒冷天气期间2月1-5日寒冷天气期间的停机和削减活动[在线]。可用:https://www.ferc.gov/sites/default/files/2020-04/08-16-11-11-report.pdf•2019 FERC和NERC员工报告:美国中南部的美国中南部寒冷[在线]。可用:https://www.nerc.com/pa/rrm/ea/documents/south_central_cold_weather_weather_event_ferc-nerc-report_20190718.pdf•“ gas Malfunction”。[在线]可用:https://www.ucsusa.org/sites/default/files/2024-01/gas%20malfunction_brief_1.8.pdf•2021年2月2021年2月的时间表和事件Texas Electric Grid Blackouts [在线]。可用:https://energy.utexas.edu/sites/default/files/utaustin%20%282021%29%29%20EventsFebruany2021Texasblackout%2020210714.pdf
图3:基于α-MOO 3的EUV检测器的性能:(a)在不同的光子能量和偏置电压下测量当前时间(I-T)曲线,而EUV辐射在周期中关闭并在循环中打开。时间归一化,以在同一面板中显示所有数字。随着偏差的增加,信号增加,但黑电流也有所增加。(b)。在分贝(𝑑𝐵)中作为光子能量的函数的信噪比(SNR)在低偏置时显示出强信号强度约为15 dB。由于在给定较高的偏置电压下暗电流值增加,在较高的偏置电压下,信号强度降低。(c)EUV在给定光子能量下诱导的电流对光子通量依次增加的响应,表明在检测极高的通量〜10 12𝑃ℎ/𝑠时没有饱和或降解,显示了设备稳定性。(d)记录电流的密度图与极高通量(〜10 12𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑠)下的100个连续重复测量的偏置电压(-5至5𝑉)的函数进行了测试,以测试该设备的
1 二.物理研究所,Justus-Liebig-Universit¨at,35392 Giessen,德国 2 GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH,64291 Darmstadt,德国 3 TRIUMF,温哥华,不列颠哥伦比亚省 V6T 2A3,加拿大 4 曼尼托巴大学物理与天文系,温尼伯,曼尼托巴省 R3T 2N2,加拿大 5 波兰科学院核物理研究所,PL-31 342 Krak´ow,波兰 6 玛丽居里大学物理研究所,PL-20 031 Lublin,波兰 7 维多利亚大学物理与天文系,维多利亚,不列颠哥伦比亚省 V8P 5C2,加拿大 8 不列颠哥伦比亚大学物理与天文系,温哥华,不列颠哥伦比亚省 V6T 1Z1,加拿大 9 物理与爱丁堡大学天文学系,爱丁堡 EH9 3FD,苏格兰,英国 10 西蒙弗雷泽大学化学系,本拿比,不列颠哥伦比亚省 V5A 1S6,加拿大 11 麦吉尔大学物理系,H3A 2T8 蒙特利尔,魁北克省,加拿大 12 斯特拉斯堡大学,CNRS,IPHC UMR 7178,F-67 000 斯特拉斯堡,法国 13 约克大学物理系,约克 YO10 5DD,英国 14 卡尔加里大学物理与天文学系,卡尔加里,艾伯塔省 T2N 1N4,加拿大 15 胡阿里布迈丁科技大学物理学院,BP 32,El Alia,16111 Bab Ezzouar,阿尔及尔,阿尔及利亚 16 Academy of Sciences, BG-1784 Sofia, Bulgaria 17 Helmholtz Forschungsakademie Hessen fr FAIR (HFHF), GSI Helmholtzzentrum fr Schwerionenforschung, Campus Gieen, 35392 Gieen, German 18 郑州大学物理与微电子学院,郑州 450001,中国(日期:2021 年 7 月 20 日)
在美国,许多城市都因极端高温而创下了气温纪录,死亡人数也创下了历史新高。由于“热岛”效应,白天气温可能比周边农村地区高出 7 华氏度。城市环境中的极端温度在日落之后很难消退,因为混凝土和其他材料可以在日落之后很好地保留热量——这种不健康的条件会一直持续到傍晚和夜间。与森林和水体等自然景观相比,建筑物和道路等物理基础设施吸收和重新发射太阳热量的程度更大。在城市地区,吸热结构高度集中,植被有限;相对于外围地区,会形成温度较高的“岛屿”。这种极端高温对我们社区的健康和安全以及国家的关键基础设施产生了严重的负面影响。
也许比任何其他利益相关者群体都更重要,保险业站在不断发展的极端热风险格局的最前沿。该行业在各个部门(生命,健康,财产和农业)都在工作,所有这些行业都通过财产损失,农作物损失,基础设施退化以及死亡率和发病率的显着增加而面临着极端热量的大量暴露。此外,保险公司是经济中最大的资产所有者之一,与极端热量相关的投资风险面向该行业前进的严重挑战。论坛的业务处于边缘:建立对气候危害的弹性报告指出,在未来十年内,极端热量造成了72-73%的固定资产损失的72-73%。投资气候弹性和适应的业务案例从未更清楚 - 每美元投资于气候弹性,可以节省13美元。2尽管这种引人注目的业务案例,但仍有88%的气候灾难融资仍分配给事后响应,而不是事前的能力建设。
鉴于这些限制,电力电子器件多年来不断发展,体积小、功率密度高,在极端温度环境和大热循环中具有额外的运行优势。因此,研究人员正在努力开发有效的热系统以提高其可靠性。例如,随着以宽带隙半导体为中心的研究的发展,氧化镓 (Ga 2 O 3) 已发展成为半导体技术发展的前沿。这种材料具有良好的固有特性,即临界场强、广泛可调的电导率、迁移率和基于熔体的块体生长,被广泛用于高性能电力电子器件,有望成为硅基功率器件的替代品。这种材料具有一系列直到最近才在一个系统中观察到的特性。这些特性包括:低热导率。最后,β-Ga 2 O 3 具有近 5 eV 的超宽带隙(Green 等人,2022 年)。因此,在不久的将来,SiC 很有可能被 Ga2O3 取代。氧化镓(III),通常称为氧化镓,已成为电力电子设备的新型半导体材料。另一项新发现是氮化镓(GaN)。GaN 具有高电子迁移率的吸引人的特性,可实现高开关迁移率。此外,金刚石具有高开关性能、高温操作、辐射硬度、高输出功率,并且可以合成用于电子设备(Javier 等人,2021 年)。
本文提出了一种微电网运营规划的创新方法,重点是提高经济绩效和增强弹性。所提出的方法解决了关键的不确定性,包括天气条件、电动汽车 (EV) 的概率充电/放电行为、可再生能源的整合、能源价格波动和负载条件。此外,它还考虑了电动汽车车主的满意度和需求侧管理。这项研究的一个关键创新是开发了一个综合框架,用于同时管理网络拓扑重构、网络内的电动汽车移动以及减轻恶劣天气条件的影响。采用蒙特卡罗模拟来模拟不确定性,同时使用多目标优化算法来解决问题。该算法旨在最大限度地提高网络运营商和私营部门的利润,同时最大限度地减少未供应能源及其相关处罚。所提出的方法显示出显着的改进,包括未供应能源成本降低 37.1%,网络运营商利润增加 5%,电动汽车充电站利润增加 23.1%。总体而言,该方法比现有方法的性能高出约 8%。所提出的方法为提高微电网在极端天气条件下的弹性和运行效率提供了一种有效且稳健的解决方案,展示了其优于传统方法的优势。
设备安全连接到 ExtremeCloud IQ 后,它会向 ExtremeCloud IQ 提供数据流信息,以便进行综合报告。此功能有助于将有线和无线指标(包括客户端应用程序指标)报告到 ExtremeCloud IQ。与控制器的连接还将 ExtremeCloud IQ 云应用程序的简化工作流程扩展到本地部署。使用 ExtremeCloud IQ Site Engine 的本地部署提供了额外的功能。ExtremeCloud IQ Site Engine 超越了端口、VLAN 和 SSID,并提供对单个用户、应用程序和协议的详细控制。当与无线和身份和访问管理产品结合使用时,ExtremeCloud IQ Site Engine 成为监控和管理基础设施中所有组件的中心位置。ExtremeCloud IQ Site Engine 的 ExtremeAnalytics 组件提供更全面的位置分析,如下所述。
极端天气事件归因是一种气候科学方法,它探讨了热浪,洪水和野火等事件如何与人为引起的气候变化相关。通过对工业前的气候进行建模并将其与当今气候进行比较,科学家可以计算人类活动对极端事件的影响。