+ Knight Cancer Research Building 2720 S Moody Ave F3 7 Robertson Collaborative Life Sciences Building 2730 S Moody Ave F7 , Bike Plaza F7 @fill Center for Health & Healing 3303 S Bond Ave FS@@ Center for Health & Healing 3485 S Bond Ave Fil - Macadam Warehouse 3930 S Macadam Ave
与供应商一起部署MMOG/LE有什么好处?汽车制造商将越来越多地要求其1级供应商与自己的供应商一起部署MMOG/LE,等等,因此您需要在及时准备。除了符合MMOG/LE 6.8.1要求(F3和F2标准)来实现客户的批准外,您自己的运营还可以通过可见自己的供应基础的能力来受益。
F1-1 Q19, Q18, Q17, Q1, Q3 0.78 F1-2 Q19, Q18, Q17, Q1, Q2, Q3 0.79 F1-3 Q19, Q18, Q17, Q1 0.80 F1-4 Q19, Q18, Q17 0.81 F1 使用基于人工智能的教育技术的自我效能 F2-1 Q25, Q24 0.88 F2 基于人工智能的教育技术与人类建议/推荐 F2-2 Q25, Q24, Q8 0.71 F1 + F2 Q19, Q18, Q17, Q25, Q24 0.75 F3 Q14, Q15, Q16 0.69 F3 使用基于人工智能的教育技术相关的焦虑 F4 Q10, Q9, Q12, Q11 0.66 F4 基于人工智能的教育技术缺乏人性化 F5-1 Q5, Q6, Q2 0.69 F5-2 Q5, Q6, Q2, Q7 0.68 F5-3 Q5, Q6, Q2, Q7, Q1, Q3, Q4 0.75 F5 对基于人工智能的教育技术的感知优势 F5-4 Q5, Q6, Q2, Q13 0.52 F6 Q23, Q22, Q21 0.67 F6 提高对基于人工智能的教育技术的信任度的首选方式 F7-1 -Q13, Q7 0.27 F7-2 -Q13, Q7, -Q12 0.45
• Ryuichi Imai、Kenji Nakamura、Yoshinori Tsukada、Daigo Ito 和 Tetsuhiko Kurihara:使用行车记录仪图像进行深度学习的道路路面裂缝评估方法研究,《日本土木工程师学会期刊》、《JSCE F3(土木工程信息学)会议论文集》,日本土木工程师学会,第 77 卷,第 2 期,第 I_67-I_76 页,2021 年。
聚氯乙烯的顽固性在生产和处置过程中引起了重大环境挑战。这项研究旨在评估从塑料生产工厂中的洗涤池分离到生物降解聚氯化物(PVC)的真菌的能力。在60天内,将隔离的真菌与Bushnell Haas培养基中的塑料一起孵育。这些菌株被鉴定为Coriolopsis gallica(F1),尼日尔曲霉(F2)和曲霉(F3)。孵育后,选择了三种方法:傅立叶变换红外(FTIR)分析,气相色谱 - 质谱(GC-MS)和减肥实验,以确定PVC的生物降解。与对照相比,FTIR分析表明峰变化,消失和形成了已处理的PVC的新键。GC-MS分析揭示了PVC分解过程中羧酸,酒精,硝酸盐和新化合物的形成。微生物菌株F1,F2,F3和真菌联盟(FC)的减肥实验的结果分别为19、25.3、23.6和52.6%。FC是通过组合所有三种真菌分离株来制备的。本研究得出的结论是,这些孤立的真菌菌株具有PVC塑料部分生物降解的潜力。尽管如此,结果表明真菌财团在PVC在水性环境中的降解中起着重要作用。
炎症性肠病 (IBD) 是一种结肠慢性炎症疾病,包括溃疡性结肠炎和克罗恩病。地塞米松是一种类固醇抗炎药,可用于 IBD 治疗。本研究旨在获得用于 IBD 治疗的地塞米松药物输送系统的最佳配方,并根据体外溶解试验研究其释放曲线。地塞米松与益生菌嗜酸乳杆菌和长双歧杆菌混合物 (1:1) 结合配制成双包衣片。使用湿法制粒法生产核心片剂,然后在内层涂层上涂上 4% b/v 果胶,在外层涂层上涂上 Eudragit L100 和 S100 (1:4) 的混合物。通过改变益生菌浓度(分别为 0%、16% 和 40%)(分别为 F1、F2 和 F3),制备了三种不同的核心片剂配方。 F1、F2 和 F3 在 0.1 N HCl pH 1.2 中 2 小时的累积药物释放分别为 42.92 ± 1.55%、39.41 ± 4.10% 和 39.39 ± 1.63%,而在 pH 6.8 磷酸盐缓冲液中 12 小时后分别为 102.83 ± 1.56%、105.08 ± 1.70% 和 98.81 ± 3.37%。从结果来看,我们得出结论,所有配方都可以成为开发结肠靶向药物递送的有希望的候选方案。
配制干粉吸入器 (DPI) 时需要具有某些特性的合适赋形剂,以将抗结核 (TB) 药物输送到肺部并在肺部和肺泡巨噬细胞中提供足够的药物浓度,以克服活动性和潜伏性结核感染。本研究旨在探索壳聚糖和海藻酸盐的组合在配制利福平 DPI 中的作用。使用不同组合的壳聚糖和海藻酸盐通过喷雾干燥制备利福平 DPI。对所得利福平干粉的粒度分布、形态、水分含量、药物含量和包封率进行了表征。除了在 pH 7.4 的磷酸盐缓冲液(含 0.05% 十二烷基硫酸钠)和 pH 4.5 的邻苯二甲酸酯缓冲液中的溶解研究外,还进行了对细胞系 A549 的细胞毒性研究。 DPI F3(RIF-Ch-Alg 2:1:1)中壳聚糖和海藻酸盐的组合在模拟肺液(2 小时内 78.301% ± 1.332%)和模拟巨噬细胞液(2 小时内 41.355% ± 1.259%)中均提供了利福平 DPI 的合适药物释放曲线。DPI F3 还具有 11.4288 ± 1.259 µm 的空气动力学粒径,并且在浓度高达 0.1 mg/ml 时也被认为对肺上皮细胞(活力 89.73%)是安全的。总之,壳聚糖和海藻酸盐的组合是一种有前途的载体,可用于开发具有适合结核病治疗特性的干粉吸入器。
电动机阈值(MT)是确定RTMS处理“剂量”的方式。这是大多数RTMS协议的重要度量。MT测量的准确性是实现治疗有效性和安全性的关键。与治疗位置映射相关,必须快速但准确地执行MT测定。Neuro-MS.NET软件提供了用于MT确定和大脑映射的一系列工具:使用EMG放大器,使用步骤算法,F3定位器和视觉帮助的自动MT测定,半自动MT测定。
