在2016年1月,我们在由Biotrial药理学中心(法国Rennes)代表BIAL-PORTELA&CA的I期临床试验中获悉了严重不良事件(SAE)。sa(圣马梅德·杜·科罗纳多(coronado),portugal)。试验涉及化合物BIA 10-2474,该药物旨在抑制脂肪酸酰胺水解酶(FAAH)。经过两个初始阶段(单一升级剂量高达100 mg和动力学食物相互作用研究),并消除了任何不愉快的SAE,即阶段的阶段,该阶段旨在检查多种剂量的效果(5或6次每日剂量),导致了6名参与者的SAE,这些参与者都被接受了最高测试的剂量剂量剂量(50 mg)。这是一种阈值效应,因为没有报道SAE,以前给志愿者的剂量较低,为20 mg。最严重的症状具有中心神经系统特征,最糟糕的是与昏迷迅速导致脑死亡相关的症状。在其他5个住院的细节中,有2个受到严重的神经系统损害(显然在几天之内有临床改善)。由于这些事件,审判立即被暂停。更多信息(包括审判协议)可在法国国家医学和健康产品安全机构(ANSM)1的网站上获得1。该机构最近还发布了总结
几个世纪以来,植物大麻Sativa已用于药物和娱乐目的。它含有500多种化合物,其中大约100种属于大麻素类(1)。在1960年代,分离并表征了主要的精神活性成分( - ) - trans -9-二氢大麻酚(THC)(THC)(2)。在确定THC结构后三十年(3,4)确定了大麻素1(CB 1)和2(CB 2)受体,即THC发挥其特征作用的分子实体。这一发现开始寻找与这些受体结合的内源配体(所谓的内源性大麻素)。n-氨基苯二烯丙基氨基胺(Anandamide或AEA)被发现为第一个内源性大麻素,不久后是2-芳基二烯丙基甘油(2-ag)(5,6),促使他们研究了它们的生物合成,新陈代谢,运输和生理学角色(7)。一起,CB 1/2受体,内源性大麻含量以及负责其生物合成和失活的蛋白质构成内源性大麻素系统(ECS)。在这里,我们简要讨论了医用大麻的潜在治疗和不利影响,并审查了基于对EC的调节而考虑的潜在替代策略,重点是针对靶向脂肪酸酰胺水解酶(FAAH)和单酰甘油甘油脂肪酶(MAGL)的实验药物,酶,酶,无活性内替代(8)(8)(8)。
Saptarshee Mitra,Raphael Paris,Laurent Bernard,RémiAbbal,Pascal Charrier等。应用于海啸沉积物的X射线图:优化的图像处理和粒度,粒度,粒度形状和沉积物的定量分析3D。海洋地质学,2024,470,pp.107247。10.1016/j.margeo.2024.107247。hal-04514532
慢性疼痛影响着全球数百万人,迫切需要新的治疗方法。确定新型镇痛策略的一种方法是了解导致人类遗传性疼痛不敏感障碍的生物功能障碍。在本文中,我们报告了最近发现的大脑和背根神经节表达的 FAAH-OUT 长链非编码 RNA (lncRNA) 基因如何调节相邻的关键内源性大麻素系统基因 FAAH,该基因编码可降解花生四烯酸酰胺的脂肪酸酰胺水解酶。我们证明 FAAH-OUT lncRNA 转录的中断会导致 FAAH 启动子内发生 DNMT1 依赖的 DNA 甲基化。此外,FAAH-OUT 包含一个保守的调控元件 FAAH-AMP,可作为 FAAH 表达的增强子。此外,通过对患者来源的细胞进行转录组分析,我们发现了因 FAAH-FAAH-OUT 轴破坏而失调的基因网络,从而为理解观察到的人类表型提供了连贯的机制基础。鉴于 FAAH 是治疗疼痛、焦虑、抑郁和其他神经系统疾病的潜在靶点,对 FAAH-OUT 基因调节作用的新认识为未来基因和小分子疗法的开发提供了平台。
AEA N-arachidonoylethanolamine or anandamide AP-1 Activator protein 1 BBB Blood-brain barrier BDNF Brain-derived neurotrophic factor cAMP Cyclic adenosine monophosphate CB1 Cannabinoid receptor 1 CB2 Cannabinoid receptor 2 CBD Cannabidiol CBDA Cannabidiolic acid CBG Cannabigerol CBGV Cannabigivarin CNS Central nervous system COX-2 Cyclooxigenase-2 DAGL Diacylglycerol lipase DAMPs Danger associated molecular patterns eCB Endocannabinoid ECS Endocannabinoid system ERK Extracellular signal-regulated kinase FAAH Fatty acid amide hydrolase GFAP Glial fibrillary acidic protein GPCR G protein-coupled receptor HMGB1 High mobility group box 1 HPC Hippocampus Iba1 Ionized calcium binding adaptor molecule 1 IL Interleukin INF-γ Interferon gamma iNOS Inducible nitric oxide synthase IκBα Inhibitory kappa Bα LPS Lipopolysaccharide MAGL Monoacylglycerol lipase MCP-1 Monocyte chemoattractant protein 1 MCSF Macrophage刺激因子MD2粒细胞分化蛋白-2 MHCII主要组织相容性复杂II MIP-1α巨噬细胞炎症蛋白1αmiRNA MicroRNA MRNA MIRNA MRF-1小胶质细胞反应因子1 MyD88髓样分化因子88与2个相关因子2 NF-κB核因子-kappa b oeA乙醇酰胺
上级法院的当前。本文旨在丰富对药用大麻的理解,鼓励在医疗形成中引入主题。方法论:在填充包含标准中,发现了32篇文章的Medline/PubMed和Scielo数据库中的文学评论。结果:最著名的内丙替诺碱是Anandamide(N-Araquidonoil乙醇胺)和2-Araquidonoil甘油(2-AG),这些是通过膜酸和DHA(源自Omegas 3和6)的需求中的膜磷脂生产的。作用于内型抗蛋白系统的主要酶是NAP-PLD,N-ACIL PHOSPASTIDILEMANOLINE,磷脂酶D,FAAH,DGLA和DGLβ,MAGL,ABHD,ABHD和ABHD12。SEC涉及的主要受体为:CB1和CB2。我们看到,许多疾病和疾病都通过使用大麻二酚(例如焦虑和睡眠障碍)来控制,此外,我们还可以提及癫痫治疗的空间。通过各种方式急性或长期给药大麻二酚不会导致变化或导致损失作为重大毒性作用或在神经检查中引起任何变化。研究表明,帕金森氏病患者的治疗和行为中的大麻反应呈阳性,并且也有足够的证据表明在运动障碍以及非运动症状的患者中使用大麻衍生物。医疗专业人员应始终意识到治疗和使用大麻的迹象的新进展。结论:工作在当前立法的概念中表达了法律,以及针对医学目的的关于大麻二酚的讨论的当前法院的理解。因此,与《医学伦理守则》有关的哲学从医疗职责中带来了批判性的反映,这将是对辩论充实的技术支持,为这些专业人员的未来做好了综合医疗保健的准备。关键字:大麻二酚,疾病,立法,生理学,医学伦理守则,医学教育。摘要简介:大麻具有一百多个化学成分,包括Delta-9-四氢大麻酚(THC)和大麻二酚(CBD)。这些物质揭示了各种各样的生物学作用,为治疗医疗状况打开了门。尽管许多国家的进步使大麻的医学使用合法化,但巴西FAC是复杂的法律景观。大麻素的治疗特性,其基本的作用机制和所涉及的法律含义将得到解决。从法律的角度来看,我们将提出立法范围和对高等法院的当前理解。本文旨在通过鼓励在医学培训中引入该主题来丰富有关医用大麻的知名度。方法论:Medline/PubMed和Scielo数据库中的文学综述,其中38篇文章被包括在内,因为它们符合纳入标准。作用于内源性大麻素系统的主要酶是NAP-PLD,N-酰基磷脂乙醇胺,磷脂酶D,FAAH,DGLA和DGLβ,MAGL,ABHD和ABHD12。结果:最著名的内源性大麻素是anandamide(n-蛛网膜乙醇胺)和2-芳基二酮甘油(2-AG),它们是通过膜磷脂的磷脂生产的。SEC涉及的主要接收器是CB1和CB2。我们看到,许多疾病和疾病通过使用大麻二酚作为焦虑和睡眠障碍而受到控制,而且我们可以提及癫痫治疗的空间。通过多种途径急性或长期给药大麻二酚不会导致改变或损害作为显着毒性作用或在神经检查中引起某些改变。研究表明,大麻在帕金森氏症患者的治疗和行为中的正面反应
选择仍然有限(2)。尽管 μ 受体阿片类药物仍然是控制疼痛的主要药物,但持续的阿片类药物泛滥刺激了对替代疗法的研究。目前正在努力重新配制药物,以限制副作用和成瘾风险,同时其他研究侧重于内源性疼痛通路,以指导新型止痛药的开发(3)。整个神经系统中已经发现了止痛疗法的新靶点。几种离子通道受体参与通过外周神经元的疼痛传递,包括电压依赖性钠通道(Nav1.7、Nav1.8)的异构体、电压依赖性钙通道(Cav2.2)和瞬时受体电位香草酸-1(TRPV1)受体(4-6)。参与多系统信号传导的其他分子,如一氧化氮、前列腺素 E2 (PGE2) 和白细胞介素 6 (IL-6),介导炎症和痛觉神经可塑性重塑 (7- 9)。在中枢神经系统中,疼痛感觉被认为涉及 μ-阿片类药物、κ-阿片类药物、δ-阿片类药物、N-甲基-D-天冬氨酸 (NMDA) 和大麻素受体活性 (10-12)。随着新技术的实现,其他方法现在旨在修改神经营养因子信号传导、表观遗传乙酰化或疼痛基因组 (13-15)。本篇对现有文献的叙述性回顾旨在描述几种有望成为新型镇痛疗法潜在靶点的受体和机制,包括初级传入神经、电压门控钠通道抑制剂、电压门控钙通道阻滞剂、TRPV1 靶点、全身介质、一氧化氮合酶抑制剂、微粒体前列腺素 E 合酶 1 (mPGES-1) 抑制剂、IL-6 抑制剂、中枢疼痛通路、κ -阿片类药物激动剂、δ -阿片类药物激动剂、NMDA 受体拮抗剂、大麻素、脂肪酸酰胺水解酶 (FAAH) 抑制剂、抗神经生长因子 (NGF) 抗体和各种基因干预。
大麻素,δ9-四氢大麻酚(THC)和大麻二醇(CBD)是源自大麻植物的植物大麻素(Andre等,2016; Elmes等,2015)。虽然THC是大麻的精神活性组成部分,但CBD是非精神活性的,并且已广泛研究其潜在的治疗益处(Scuderi等,2009)。这些化合物与人类中的内源性大麻素系统相互作用,在调节各种生理过程中起着至关重要的作用,包括疼痛感觉,免疫反应和神经保护作用(Lowe等,2021)。该系统是常见的G蛋白偶联受体。大麻素受体(CBR1和CBR2);以及导致大麻素合成和降解的内源性配体和酶的范围,强调了其在神经药理学中的复杂性和明显性(Keimpmema等,2014; Lu and Mackie,2021)。内源性大麻素系统不限于其两个主要的G蛋白偶联受体CBR1和CBR2。它还包括一个内源性大麻素的网络,例如anandamide和2-蛛网膜烯丙基甘油,以及脂肪酸酰胺水解酶(FAAH)和单酰甘油甘油脂肪酶(MAGL)等酶,它们合成并脱落了这些内核素。这些成分对于调节各种生理过程至关重要(Kilaru和Chapman,2020)。重要的是,大麻素与内源性大麻素系统相互作用,以调节神经传递和神经蛋白的膨胀,神经性疼痛发育和持续性的中心机制(Guindon和Hohmann,2009a; Woodhams et al。,2015)。临床试验显示了降低通过与神经系统中的CBR结合,这些化合物可以抑制神经递质和疼痛信号通路的释放,从而在以慢性疼痛和超痛性为特征的条件下提供潜在的缓解(Finn等,2021; Mlost等,2019a)。这种相互作用还表明在神经保护和神经塑性中起着更广泛的作用,这可能是其在神经性疾病中的治疗益处的基础(Xu和Chen,2015年)。cbr1主要在大脑中发现,并参与调节神经递质释放(Busquets-Garcia等,2018),而CBR2主要在免疫细胞和外围组织中表达,它们调节了障碍过程(Turcotte等人,2016年)。内源性大麻素系统提出了针对神经系统疾病的治疗干预措施的潜力,其中涉及内源性大麻素系统的失调。大麻素的潜在治疗应用延伸到一系列神经系统疾病中,包括神经退行性疾病,例如阿尔茨海默氏病(Benito等,2007),帕金森氏病(Di Filippo等人,2008年),以及亨廷顿病(Pazos et al。,2008年),以及MSORPERS,MSORTE(MS) 2018),癫痫(Kwan Cheung等,2019)和神经病等慢性疼痛状况(Maldonado等,2016)。随着这些疾病的越来越多的患病率和现有治疗方法的有限效率(Feigin等,2020),作为新型治疗剂的探索大麻素的探索加速了。临床试验在评估大麻素在治疗这些神经系统疾病中的安全性,效率和作用机制中起着至关重要的作用。大麻素,尤其是THC和CBD,因其管理MS患者的痉挛,神经性疼痛和膀胱功能障碍的能力而受到探索(Baker等,2000; Fontelles andGarcía,2008; Zajicek and Apostu,2011)。sativex是一种包含THC和CBD的眼核喷雾剂,已在多个国家批准用于治疗MS的痉挛(Giacoppo等,2017)。