综合水下作战系统 • 拖曳式低频主动和被动声纳 – Ultra Electronics • 船体安装式声纳 – Ultra Electronics Sonar S2150 • 拖曳式鱼雷对抗措施 – Ultra Electronics SEA SENTOR S21700 • 声纳浮标处理系统 – General Dynamics • 消耗性声学对抗措施
nam和/或其股东对本文包含的信息的使用或后果不承担任何责任或负责。以任何方式完全依赖这些信息,以本文用户的费用和风险。NAM和/或其股东对本文档的内容或有关其完整性的任何陈述,担保或赔偿。NAM和/或其股东对本文用户的任何损害均不承担任何责任。NAM可以在任何时候认为它是理想的,补充,删除或更改本文中信息的全部或部分。所有(包括版权)与本文有关的所有(包括版权)都归属,并保留给NAM。本文只能用于NAM提供的目的,而不是以任何可能损害NAM利益的方式。
L 部门 SIBR 第三阶段工程服务和 AN/SYM-3V 设备采购 AC13 541330 > 700 万美元 - < 9300 万美元小型企业预留 FY24 Q3 FY25 Q2 承包商设施自适应诊断电子便携式测试距离支持传感器套件;现在已获得 AN/SYM-3(V) 批准的记录系统 Mikros N63394-16-D-0018 N6339421F0037 2025 年 9 月 20 日
摘要 本文旨在阐明脑机接口对我们理解主观性影响的具体方面。脑机接口是人类机器人化的一个阶段。脑机接口领域的一些项目旨在实现自愿心灵感应——无需符号中介的交流。自愿心灵感应是指在奇点内传递信息的潜在方式之一。因此,自愿心灵感应是奇点的一个重要方面。奇点或人机共生与母子合一有相似之处。因此,心理动力学视角可能被认为有助于思考人机共生。发展心理动力学心理学的知识与斯拉沃热·齐泽克和让·鲍德里亚的见解相结合,为观察人机共生提供了另一种视角。本文声称,如果自愿心灵感应成为另一种交流方式,它将有可能消灭主观性,使其变得精神分裂。同时,我们通过成瘾的棱镜来审视逃离内心世界的可能性。
艾哈迈德讷格尔:Col Atul Apte,Shri RA Shaikh,车辆研究与发展机构(VRDE) 安贝尔纳特:Susan Titus 博士,海军材料研究实验室(NMRL) 昌迪普尔:PN Panda,综合试验场(ITR) Ratnakar S,Mohapatra,P 屋顶与实验机构(PXE) 班加罗尔:Satpal Singh Tomar,航空发展机构(ADE) Smt MR Bhuvaneswari,机载系统中心(CABS) Faheema AGJ,人工智能与机器人中心(CAIR) Tripty Rani Bose 女士,军用适航与认证中心(CEMILAC) Josephine Nirmala M 博士,战斗机系统发展与集成中心(CASDIC) Prasanna S Bakshi 博士,国防生物工程与电医学实验室(DEBEL) Venkatesh Prabhu,电子与雷达发展机构(LRDE)Ashok Bansiwal 博士,微波管研究与发展中心(MTRDC)昌迪加尔:Prince Sharma 博士,终端弹道研究实验室(TBRL)金奈:Smt S Jayasudha,战斗车辆研究与发展机构(CVRDE)德拉敦:Shri Abhai Mishra,国防电子应用实验室(DEAL)Shri JP Singh,仪器研究与发展机构(IRDE)德里:Shri Ashutosh Bhatnagar,人事人才管理中心(CEPTAM)Dipti Prasad 博士,国防生理学及相关科学研究所(DIPAS)Dolly Bansal 博士,国防心理研究所(DIPR)Shri Navin Soni,核医学及相关科学研究所(INMAS)Smt Rabita Devi,系统研究与分析研究所(ISSA)Noopur Shrotriya 女士,科学分析组(SAG) Rupesh Kumar Chaubey 博士,固体物理实验室 (SSPL) 瓜廖尔:AK Goel 博士,国防研发机构 (DRDE) 哈尔德瓦尼:Atul Grover 博士,国防生物能源研究所 (DIBER) 海得拉巴:Hemant Kumar 先生,先进系统实验室 (ASL) ARC Murthy 先生,国防电子研究实验室 (DLRL) Manoj Kumar Jain 博士,国防冶金研究实验室 (DMRL) Lalith Shankar 先生,伊玛拉特研究中心 (RCI) 贾格达尔普尔:Gaurav Agnihotri 博士,SF 综合设施 (SFC) 焦特布尔:Ravindra Kumar 先生,国防实验室 (DL) 坎普尔:AK Singh 先生,国防材料与仓储研究与开发机构 (DMSRDE) 科钦:Smt Letha MM,海军物理与海洋实验室 (NPOL)列城 : Dorjey Angchok 博士,国防高海拔研究所 (DIHAR) 马苏里 : Gopa B Choudhury 博士,技术管理学院 (ITM) 迈索尔 : M Palmurugan 博士,国防食品研究实验室 (DFRL) 浦那 : JA Kanetkar 博士 (Mrs),军备研究与发展机构 (ARDE) Vijay Pattar 博士,国防先进技术研究所 (DIAT) Shri S Nandagopal,高能材料研究实验室 (HEMRL) 特斯普尔 : Jayshree Das 博士,国防研究实验室 (DRL) 维沙卡帕特南:Smt Jyotsna Rani,海军科学与技术实验室 (NSTL)
美国国会于 1976 年成立了白宫科技政策办公室 (OSTP),旨在为总统及总统行政办公室的其他人员提供有关经济、国家安全、国土安全、卫生、外交关系和环境方面的科学、工程和技术方面的建议。OSTP 领导联邦政府各部门制定和实施完善的科技政策、计划、方案和预算,并为此与私营和慈善部门、州、地方、部落和领土政府、研究和学术界以及其他国家开展合作。OSTP 还协助管理和预算办公室对联邦预算中的研发费用进行年度审查和分析。OSTP 经参议院确认的主任担任总统科技顾问委员会和国家科技委员会的联合主席 ( https://www.whitehouse.gov/ostp )。
本程序的实验部分考虑了喷砂程序变化对表面粗糙度、残余应力和疲劳寿命的影响。研究发现,在先前喷丸处理过的表面上进行的喷砂程序使表面进一步粗糙,但不会降低所研究材料淬火和回火条件下的压缩残余应力的大小。由于喷丸过程在近表面位置引起高残余压缩应力,因此在加工过程中喷丸处理的样品的疲劳寿命比在地面条件下测试的样品长得多。在本研究中发现,喷砂程序对喷丸样品的疲劳寿命的任何影响都很小。具体而言,值得注意的是,疲劳裂纹起始点的位置从表面位置(在非常高的施加应力下)移动到亚表面位置(在较低的
目前,各种技术都处于开发或示范阶段。在接下来的几年中,必须采取以下操作,以便在2030年以后扩大地下储能: - 在合适的地下空间中证明氢存储的技术可行性,氢存储和高温储存的安全性和高温储存的能力至关重要。- 荷兰需要制定强大的政策和监督框架,以进行负责任的演示和扩大规模。政策框架包括对合适地下存储空间内存储位置的空间分布的清晰愿景,并结合了与国家和地区能源策略的集成以及有关在表面和上面下方和上方的现有和将来的活动方面的选择。- 政府将必须制定社会内部运营的社会许可,从一开始就可以选择地点的选择,替代方案的评估以及当地和国家利益的平衡。