具有氧化还原活性的有机物库非常庞大,这些有机物可能是液流电池中电化学储能的潜在候选物,因此需要对分子寿命进行高通量表征。经证实的极其稳定的化学反应需要准确而快速的电池循环测试,而这种需求常常因以时间为单位的容量衰减机制而受挫。我们开发了一种用于高温循环氧化还原液流电池的高通量装置,为探索表征参数空间提供了一个新的维度。我们利用它来评估水性氧化还原活性有机分子的容量衰减率,作为温度的函数。我们在多种液流电池电解质的时间容量衰减率中展示了类似阿伦尼乌斯的行为,从而可以推断出更低的工作温度。总的来说,这些结果强调了加速分解方案对于加快长寿命液流电池候选分子筛选过程的重要性。© 2024 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用作品,只要对原始作品进行适当的引用。[DOI:10.1149/1945-7111/ad3855]
图像去雾是一种减少图像中雾霾、灰尘或雾气影响的方法,以便清晰地查看观察到的场景。文献中存在大量传统和基于机器学习的方法。然而,这些方法大多考虑可见光光谱中的彩色图像。显然,由于热红外光谱的波长较长,受雾霾的影响要小得多。但远距离观测期间的大气扰动也会导致热红外 (TIR) 光谱中的图像质量下降。在本文中,我们提出了一种为 TIR 图像生成合成雾的方法。然后,我们分析了现有的盲图像质量评估措施雾感知密度评估器 (FADE) 对 TIR 光谱的适用性。我们进一步全面概述了当前图像去雾的最新技术,并通过经验表明,许多最初为可见光图像设计的方法在应用于 TIR 光谱时表现得出奇的好。这在最近发布的 M3FD 数据集上进行的实验中得到了证实。
最深刻的技术是那些消失的技术。他们将自己编织成日常生活的结构,直到与之无法区分。今天的多媒体机器使计算机屏幕成为苛刻的注意力焦点,而不是使其逐渐淡入背景。
每辆车都需要制动系统,它涉及盘片和衬块之间的机械摩擦,从而将动能转化为热能。一旦踩下刹车,车辆就会减速,盘片和衬块表面会发热。制动是一个瞬间过程,只要踩下刹车,摩擦热就会持续产生,一段时间后会扩散到制动系统的其他部件中。制动过程中的温度升高会对制动性能产生不利影响。产生的热量必须立即消散,否则界面温度会随着持续制动而升高。目前,刹车是使用自然空气来冷却的。然而,这种空气冷却不足以带走所有产生的热量,因此热量会积聚并产生热问题,如刹车磨损、刹车衰退、盘片开裂、刹车噪音等。与制动系统热行为有关的主要问题是刹车衰退和刹车磨损,这直接影响制动系统的制动性能。
摘要 电池组既表现出固有的电池间差异,也表现出温度和其他应力因素的时空差异,从而影响电池退化路径的演变。为了解释这些变化和退化或电池扩散的差异,我们提出了一种利用 3 参数非齐次伽马过程对锂离子电池退化进行建模的方法。该方法可预测任何电池架构的容量衰减或故障时间,并使用加速因子调整电池拟合退化数据的分布。在电池组级别,使用并联和串联配置的伽马分布变量组合对电池进行建模。将不同热条件下的容量衰减或故障时间的实际值与预测值进行比较,显示相对误差在 1 – 12% 范围内。我们还提出了一种通过分析样本量对估计不同电池组退化的影响来估计建模扩散和退化路径演变所需的最少电池数量的方法。这种采样策略对于降低设计电池组、电池管理系统和电池热管理系统所需的运行模拟的计算成本特别有用。
突然的容量淡出会对电池应用中的性能和安全性产生重大影响。为了解决可能发生的膝盖引起的担忧,这项工作旨在通过引入对膝盖的新定义及其发作来更好地理解其原因。提出了基于弯曲的膝盖及其发作的基于曲率的鉴定,这依赖于发现降解的初始和最终稳定加速之间的过渡中的明显波动的行为。该方法在两种不同的电池化学分配的实验降解数据上进行了验证,并将其合成降解数据验证,并且也标有文献中最先进的膝盖识别方法。结果表明,当最先进的膝盖识别方法失败时,我们提出的方法可以成功识别膝盖。此外,在膝盖和生命的末期(EOL)之间发现了明显的强度,并且在膝盖发作和EOL之间几乎同样强。由于该方法不需要完整的淡入淡出曲线,因此这可以打开在线膝关节识别以及膝盖和EOL预测。
护理人员应继续审查青少年下载日志,计量表或胰岛素泵,并以平静和非判断的方式提供反馈。照顾者可以随着时间的推移“淡出”监控,但是如果管理层恶化并问青少年,我应该退后一步,问“我能做什么来帮助?” 一些青少年可能会继续需要额外的帮助 - 允许他们寻求帮助
11 注:该模拟显示了 2020 年第一季度中国和中国香港的国内需求下降 4%、2020 年第二季度下降 2% 的影响,加上 2020 年上半年全球股票和非食品大宗商品价格下降 10%,以及 2020 年上半年所有国家的投资风险溢价上升 10 个基点。假设所有冲击将在 2021 年初逐渐消退。资料来源:经合组织使用 NiGEM 全球宏观经济模型进行的计算。
透明保护涂层会受到多种影响,包括:>工业尘埃可能会对漆膜产生化学侵蚀>在一段时间内,累积的污垢和空气中的污染物会与正常风化相结合,可能会使涂层变暗或褪色>鸟粪、昆虫污渍和树液等天然物质可能会在漆膜上留下痕迹或腐蚀。>含盐或其他矿物质的水(如井水)可能会导致涂层褪色
为鼓励接种疫苗,我们开展了一项综合大众媒体宣传活动,强调两种疫苗同等重要、疫苗保护作用可能会减弱、流感病毒每年都会发生变化,因此在冬季来临之前增强免疫力非常重要。该活动于 10 月以广播广告开始,现在将包括电视、广播(广播和数字)、户外、视频点播、社交和数字媒体广告,从 2022 年 11 月 1 日至 12 月 11 日。