简介 全权限数字发动机控制 (FADEC) 是一个由数字计算机(称为发动机控制单元 (ECU) 或电子发动机控制器 (EEC))及其相关附件组成的系统,用于监控和控制飞机发动机性能的各个方面。FADEC 专为活塞发动机和喷气发动机而设计。任何发动机控制单元的目标都是让发动机在给定条件下以最大效率运行。这项任务的复杂性与发动机的分支成正比。最初,发动机控制单元由飞行员操作或控制的基本机械连杆组成,当它发展时,EEU 由第三名获得飞行员认证的机组成员,即飞行工程师控制。飞行工程师或飞行员能够通过移动直接连接到发动机的油门杆来控制燃油流量、液压、功率输出和许多其他发动机参数。
今天,电子点火和电子发动机控制 (EEC) 技术将为您带来诸多好处。如果您按下按钮来启动和停止汽车,则意味着您拥有 EEC。EEC 通过每秒数百次评估来自发动机和环境传感器的输入,使您的发动机以最佳效率运行,以适应您的操作环境。这些传感器可以提供有关动力装置健康状况的宝贵信息。如果检测到问题,面板上的服务灯将指示问题。
• 详情请参阅 FADEC 国际服务信 SL-Fl-0020、S/B 73-0135 • 建议的软时间间隔为 30,000 小时或 6,000 个周期 • 大修中包含的关键可靠性服务公告和更换: – 降压系统单元 (PSU) 115V 断开保护 – 底盘安装脚角撑板拆除 – 数字处理模块 (DPM) 电可擦除可编程只读存储器 (EEPROM) 写保护 – 在中央处理单元侧的特定位置使用特定日期代码更换 DPM1 EEPROM – DPM3 焊点检查和 R28 重新定位 – 输入/输出模块焊点检查和粘合材料拆除
航空燃气涡轮发动机的发展对发动机控制系统提出了越来越高的要求,以提高推力并改善燃油消耗。这些要求导致了电子控制系统的广泛使用。这种系统的早期版本采用了监控概念,于 20 世纪 70 年代推出,目前在运行的许多飞机上都能找到这种系统。目前运行的 JAS 版本采用了这种概念。然而,监控概念并不能完全满足大多数现代发动机的要求,这导致了 20 世纪 80 年代全权数字电子控制 (FADEC) 概念的出现。 FADEC 系统控制发动机所需的所有功能,并引入了许多改进,例如:(i) 可以实施现代控制理论中的复杂技术,这些技术既可以提高性能,又可以提高可靠性,(ii) 由于有限使用流体力学而减轻重量,以及 (iii) 可以实施内置维护支持,从而降低维护成本并提高系统可靠性。正如这些示例所示,FADEC 支持提高性能和可靠性并降低总成本的努力。FADEC 系统目前在许多飞机上运行,例如:新型军用飞机 F-18E/F 和欧洲战斗机以及民用飞机空客 320、321 和波音 777。
• 详情请参阅 FADEC 国际服务公告 S/B 73-0119 • 建议的软时间间隔为 5,000 次循环 • 大修中包含的关键可靠性服务公告和更换: – 压力系统模块 (PSM) C115/C116 电容器更换 – 继电器引线和接地“E”端子上的 PSM 回流焊点 – 主控制板 (MCB) MN4 和 MN76 球栅组件 (BGA) 更换(符合 S/B 73-0118) – MCB MN82 检查并在必要时更换 – MCB SOT23 封装设备焊点回流 – 将 AW7 MCB 升级到最新的 AW7 配置
21 世纪初,产品支持人员开始与航空公司合作,探讨如何长期支持 FADEC。当我们密切监测这些控制装置的现场可靠性时,我们发现趋势表明,与旧装置的工作时间和周期相关的故障率正在逐渐增加。这个问题从来都不是安全问题(由于控制系统内置的冗余),而是飞机停机时间和航空公司更高的维护成本问题。
21 世纪初,产品支持人员开始与航空公司合作,探讨如何长期支持 FADEC。当我们密切监测这些控制装置的现场可靠性时,我们发现趋势表明,与旧装置的工作时间和周期相关的故障率正在逐渐增加。这个问题从来都不是安全问题(由于控制系统内置的冗余),而是飞机停机时间和航空公司更高的维护成本问题。
航空发动机压气机的设计重点是巡航飞行阶段的性能。当发动机运行状态偏离设计状态时,压气机需要将气流保持在限制范围内并防止失速和喘振的系统 [13]。为了确保这一点,有效的方法之一是引入 VBV 系统,该系统已广泛应用于现代大涵道比涡扇发动机,大多位于助推器出口处。对于 VBV 以能量利用效率换取助推器喘振裕度而言,VBV 位置控制功能既影响发动机性能也影响发动机安全性。因此,该功能应体现发动机性能和安全性之间的平衡。如果 VBV 位置控制功能执行不正确,将影响发动机性能和发动机安全性。尽管如此,VBV 位置控制功能应满足 FAR33 中规定的最低安全要求。因此,本文仅研究安全系数的方法是合理的。航空发动机在瞬态过程中的失效机理非常复杂,这使得航空发动机的安全性分析很难完成。VBV位置控制功能失效将通过发动机重匹配过程影响整个发动机,而发动机重匹配过程受发动机非线性方程控制。经验,
同时,通用航空领域开发新解决方案的资源有限,导致目前使用的许多发动机类型仍未采用 FADEC 技术。通用航空类别包括各种应用,从用于娱乐飞行的小型飞机,到农用飞机,再到用于客运的飞机。这些应用可能因飞机的尺寸/设计(以及安全要求)而有很大不同,但也因特定飞机执行的飞行类型而不同。尽管最初是为涡轮发动机设计的,但最近 FADEC 也越来越受欢迎,用于带有活塞发动机的小型飞机。在这一领域,Continental 和 Lycoming 等活塞发动机制造商越来越多地在其发动机上使用这项技术。Lycoming 使用其 iE2 FADEC 技术(TO-450、TIO-540-NXT、TSIO-550、TEO-540-A1A 发动机)。大陆航空使用其 PowerLink FADEC(IO-240、IO-360、IO-550、IOF-240、IOF-550、TSIOF-550 发动机)。FADEC 在这方面的主要优势包括发动机控制简单(飞行员可以更多地关注态势感知,而不是飞机控制)、更好的问题诊断以及更高的性能和效率。用于航空用途的柴油往复式发动机的 FADEC 也受到同样的关注。据 Cox [12] 称,用于此应用的 FADEC 价格在 2500 美元到 7500 美元之间。
同时,通用航空领域用于开发新解决方案的资源有限,导致目前使用的许多发动机类型仍未采用 FADEC 技术。通用航空类别包括各种应用,从用于娱乐飞行的小型飞机到农用飞机,再到用于运输乘客的飞机。这些应用可能因飞机的大小/设计(和安全要求)而有很大差异,也与特定飞机执行的飞行类型不同。尽管 FADEC 最初是为涡轮发动机设计的,但最近在配备活塞发动机的小型飞机中也越来越受欢迎。在这个领域,像 Continental 和 Lycoming 这样的活塞发动机制造商越来越多地在其发动机上使用这项技术。Lycoming 使用其 iE2 FADEC 技术(TO-450、TIO-540-NXT、TSIO-550、TEO-540-A1A 发动机)。大陆航空使用其 PowerLink FADEC(IO-240、IO-360、IO-550、IOF-240、IOF-550、TSIOF-550 发动机)。FADEC 在这方面的主要优势包括发动机控制简单(飞行员可以更多地关注态势感知而不是飞机控制)、更好的问题诊断以及更高的性能和效率。航空用柴油往复式发动机的 FADEC 也受到同样的关注。据 Cox [12] 称,用于此应用的 FADEC 价格在 2500 美元到 7500 美元之间。