多种 pre|CISION ® exatecan 化合物表现出 FAP 诱导的细胞毒性。用 exatecan、pre|CISION ® exatecan、pre|CISION® exatecan + hFAP 或 pre|CISION ® exatecan + FAPi 处理 CFPAC-1 细胞 72 小时。培养基中血清中的 FAP 活性水平较低,因此具有不同 kcat/Km 的化合物表现出不同的活性;这用于监测化合物特性。调节封端基团 (A) 和自毁连接子 (B) 将改变 FAP 亲和力和化合物特性,如其各自的细胞毒性图所示。
摘要:采用化学酰亚胺化法制备了具有刚性聚合物主链的氟化芳香族聚酰亚胺 (FAPI) 薄膜。聚酰亚胺薄膜表现出优异的力学性能,包括高达 8.4 GPa 的弹性模量和高达 326.7 MPa 的拉伸强度,以及突出的热稳定性,包括玻璃化转变温度 (T g ) 为 346.3–351.6 ◦ C 和空气中的热分解温度 (T d5 ) 为 544.1–612.3 ◦ C,以及在 500 nm 处>81.2% 的高无色透过率。此外,聚酰亚胺薄膜在 10–60 GHz 下表现出稳定的介电常数和低介电损耗,这归因于刚性聚合物主链的紧密堆积限制了电场中偶极子的偏转。还建立了分子动力学模拟来描述分子结构和介电损耗的关系。
68 GA标记的细胞细胞激活蛋白抑制剂(68 GA-FAPI)PET/CT已显示出令人鼓舞的临床结果,乳腺癌(BC)患者的SUV Max和肿瘤与背景比(TBR)高于18 F-FDG PET/CT。在这里,我们旨在评估68 Ga-fapi PET/CT的适用性,以预测卑诗省新辅助化疗(NAC)的病理反应的早期和晚期。方法:预期包括22例新诊断的BC和NAC指示的患者。所有患者在基线时接受了标准的化疗和68 Ga-Fapi PET/CT,在2个NAC(PET2)和手术前1周后(PET3)进行了1周(PET3)。SUV最大。通过免疫组织化学分析了原发性病变中纤维细胞活化蛋白的表达。结果:七名患者(31.8%)达到了病理完全反应(PCR),15例(68.2%)患有残留肿瘤。13例患者(59.1%)表现出原发性肿瘤的同心戒断,而9例(40.9%)显示逐渐戒断。在PET2和PET3之间,原发性肿瘤的D SUV最大(R 2 5 0.822; P 5 0.001)和转移性淋巴结(R 2 5 0.645; P 5 0.002)显着相关。PCR患者的PET2和PET3时SUV MAX和TBR的绝对值比没有PCR的患者低(P,0.05)。此外,在任何时间点,较大的D SUV最大值与PCR密切相关(P,0.05)。在原发性肿瘤还原模式下观察到SUV Max,TBR和D SUV MAX的相似下降趋势。For predicting pCR, the optimal cutoff values for D SUV max after 2 chemotherapy cycles, D SUV max before sur- gery, TBR after 2 chemotherapy cycles, and TBR before surgery of the primary tumor were 3.4 (area under the curve [AUC], 0.890), 1.1 (AUC, 0.978), 2 63.8% (AUC, 0.879), 2 90.8% (AUC,分别为0.978),7.6(AUC,0.848)和1.4(AUC,0.971)。免疫组织化学表明,68 ga-fapi PET/CT的SUV最大和TBR与纤维细胞激活蛋白表达呈正相关(两者的P,0.001)。contusion:评估NAC期间68 GA-FAPI摄取的早期变化68 Ga-Fapi PET/CT可以预测PCR和原发性肿瘤同心
参考文献 1. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J 等人。开发用于靶向成纤维细胞活化蛋白的喹啉类治疗诊断配体。J Nucl Med. 2018;59(9):1415- 22。 2. Loktev A, Lindner T, Mier W, Debus J, Altmann A, Jäger D 等人。针对癌症相关成纤维细胞的肿瘤成像方法。J Nucl Med. 2018;59(9):1423-9。 3. Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A。FAPI-PET 成像的最新进展:系统评价和荟萃分析。Eur J Nucl Med Mol Imaging。 2021;48(13):4396-414。4. Dendl K、Koerber SA、Kratochwil C、Cardinale J、Finck R、Dabir M 等人。恶性和非恶性疾病中的 FAP 和 FAPI-PET/CT:完美的共生关系?《癌症》(巴塞尔)。2021;13(19)。5. Croft AP、Campos J、Jansen K、Turner JD、Marshall J、Attar M 等人。不同的成纤维细胞亚群驱动关节炎的炎症和损伤。《自然》。2019;570(7760):246-51。6. Röhrich M、Leitz D、Glatting FM、Wefers AK、Weinheimer O、Flechsig P 等人。成纤维细胞活化蛋白特异性 PET/CT 成像在纤维化间质性肺病和肺癌中的应用:一项转化探索性研究。J Nucl Med。2022;63(1):127-33。7. Bergmann C、Distler JHW、Treutlein C、Tascilar K、Müller AT、Atzinger A 等人。68 Ga-FAPI-04 PET-CT 用于系统性硬化症相关间质性肺病中成纤维细胞活化的分子评估和风险评估:一项单中心试点研究。柳叶刀风湿病学。2021;3(3):e185-e94。8. Bondue B、Castiaux A、Van Simaeys G、Mathey C、Sherer F、Egrise D 等人。特发性肺纤维化患者开始使用抗纤维化药物后 18F-FDG PET/CT 评估早期代谢反应的缺失。Respir Res。2019;20(1):10。9. Luo Y、Pan Q、Yang H、Peng L、Zhang W、Li F。成纤维细胞活化蛋白靶向 PET/CT 与 68 Ga-FAPI 用于成像 IgG4 相关疾病:与 18 F-FDG PET/CT 的比较。J Nucl Med。2021;62(2):266-71。10. Schmidkonz C、Rauber S、Atzinger A、Agarwal R、Götz TI、Soare A 等人。通过成纤维细胞活化蛋白成像从纤维化疾病活动中分离炎症。Ann Rheum Dis。 2020;79(11):1485- 91。11. Hicks RJ, Roselt PJ, Kallur KG, Tothill RW, Mileshkin L. FAPI PET/CT:它会终结18 F- FDG在肿瘤学领域的霸权吗?J Nucl Med. 2021;62(3):296-302。
缩写:ANG,血管生成素;ANXA1,膜联蛋白A1;ATP,三磷酸腺苷;ATRA,全反式维甲酸;BCC,乳腺癌细胞;BDL,胆管结扎;BSA,牛血清白蛋白;BXPC-3,胰腺癌细胞系;CAF,癌相关成纤维细胞;CAP,可裂解两亲肽;CD26,二肽基肽酶-4;CD,分化簇;CLSM,共聚焦激光扫描显微镜;CM-101,胶原蛋白靶向探针;CPP,细胞穿透肽;CSC,癌症干细胞;CTC,循环肿瘤簇;CXCR,趋化因子受体;DCE,动态对比增强;DGL,树枝状移植聚-L-赖氨酸; DOTA,2,2 0,2 00,2 000-(1,4,7,10-四氮杂环十二烷-1,4,7,10-四基)四乙酸;DOX,阿霉素;DRP,损伤反应程序;DTPA,二乙烯三胺五乙酸酯;EA,鞣花酸;ECM,细胞外基质;EGFR,表皮生长因子受体;EMT,上皮-间质转化;EPR,增强渗透和滞留;ER,雌激素受体;FAK,粘着斑激酶;FAP,成纤维细胞活化蛋白;FAPI,FAP 抑制剂;FDA,食品药品监督管理局;FDG,氟脱氧葡萄糖;FITC,异硫氰酸荧光素;FOLFIRI,5-氟尿嘧啶,亚叶酸,伊立替康; FOLFIRINOX,5-氟尿嘧啶、亚叶酸钙、伊立替康和奥沙利铂的组合;FPR2,甲酰肽受体 2;FSP1,成纤维细胞特异性蛋白 1;FU,5-氟尿嘧啶;GA,18b-甘草次酸;GBq,千兆贝克勒尔;GEM,吉西他滨;GPER,G 蛋白偶联雌激素受体;GSH,谷胱甘肽;HA,透明质酸;HBSS,汉克斯平衡盐溶液;HER2,人表皮生长因子受体 2;HGF,肝细胞生长激素;HIF,缺氧诱导因子;HRCT,高分辨率计算机断层扫描;HSA,人血清白蛋白;HSP47+,热休克蛋白 47; HSPG2,硫酸肝素蛋白聚糖 2;HSTS26T,人软组织癌;HSV,单纯疱疹病毒;ID/g,每克注射剂量;IFN,干扰素;IFP,间质液体压力;IGF1,胰岛素样生长因子;IL,白细胞介素;IPF,特发性肺纤维化;IPI-926,Hedgehog 通路抑制剂;ITGA11,整合素亚基 α 11;ITGA5,整合素亚基 α 5;JAK,Janus 激酶;JNK,Jun N - 末端激酶;KPC,胰腺导管腺癌的临床相关模型;KRAS,Kirsten 大鼠肉瘤病毒;LCP,脂质磷酸钙纳米颗粒;LOXL2,赖氨酰氧化酶样 2; LPD,脂质包被的鱼精蛋白 DNA 复合物;LPP,脂肪瘤首选伴侣;LST-Lip,氯沙坦包裹的脂质体;LXA4,脂氧素 A4;MAPK,丝裂原活化蛋白激酶;MCT4,单羧酸转运蛋白 4;MET,肝细胞生长因子受体;MHC,主要组织相容性复合体;MMP,基质金属蛋白酶;MPS,单核吞噬细胞系统;MRI,磁共振成像;MSC,间充质干细胞;mTOR,哺乳动物雷帕霉素靶蛋白;MU89,人黑色素瘤;NF,正常成纤维细胞;NH 2,胺基;NK,自然杀伤细胞;NO 2,一氧化氮;NODAGA,1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸;NP,纳米粒子;NSCLC,非小细胞肺癌;PAMAM,聚酰胺胺;PD-1,程序性细胞死亡蛋白 1;PDAC,胰腺导管腺癌;PDGF,血小板衍生生长因子;PDGFR,PDGF 受体;PDT,光动力疗法;PDX,患者来源的异种移植;PEG,聚乙二醇;PEGPH20,重组人透明质酸酶 PH20 的聚乙二醇化形式;PET,正电子发射断层扫描;PFT,周细胞向成纤维细胞转变;PGE2,前列腺素 E2;PP,聚乙二醇-聚己内酯;PSC,胰腺星状细胞;PSMA,前列腺特异性膜抗原;PTC,乳头状甲状腺癌;PTX,紫杉醇; QD,量子点;QP,槲皮素磷酸盐;RGD,三肽精氨酸-甘氨酸-天冬氨酸;RNA,核糖核酸;ROCK,Rho 相关蛋白激酶;ROS,活性氧;RUNX3,Runt 相关转录因子 3;SATB,特殊 AT 富集序列结合蛋白 1;SBRT,立体定向放射治疗;SDF-1,基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体; TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1;VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献均等。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。