摘要 - BioInformatics应用程序通常需要根据其与特定序列目标的相似性过滤FastQ测序读取,例如消除与特定病毒相关的污染或隔离读取。尽管基于对齐的方法对这些任务有效,但它们表现出降低的灵敏度并可能引入高估,尤其是在面对较低的相似性搜索时。在本文中,我们使用一种新颖的无对齐方法来过滤FASTQ根据定义的相似性阈值读取。与基于对齐方式的方法不同,即使在相似性较低的方案中,例如在古代DNA中,我们的方法也保持较高的灵敏度。此外,我们的方法是基于压缩的,可以减轻其他方法固有的高估风险。我们在各种应用程序中演示了我们方法的多功能性,并提供了一种称为磁铁的公共开源物。磁铁提供了用于加速处理的多线程功能,并且可以在https://github.com/cobilab/magnet上自由访问。索引项 - 数据压缩,生物信息学,计算生物学,测序读取,数据滤波器
请注意,生成 FASTQ 分析模块 v3.1.0 需要本地运行管理器框架 v3.0 或更高版本,并且与本地运行管理器框架 v2 或更低版本不兼容,而生成 FASTQ 分析模块 v2.1.0 需要本地运行管理器框架 v2,并且与本地运行管理器框架 v3.0 或更高版本不兼容。