摘要:基因组结构,表观遗传学和增强子功能控制细胞的命运和身份。重新编程对诱导的多能干细胞(IPSC)将起始体细胞的转录率和染色质景观更改为逐步的多能细胞的转录景观。在正常胚胎发育过程中,调节网络的变化受到严格的调节,以确定细胞命运,并且同样需要在重编程过程中在细胞命运控制中发挥作用。关闭躯体程序并打开多能计划涉及表观遗传景观,增强子功能,染色质访问性和3D Chro-Matin拓扑的动态重组。在这种情况下,我们将在这里审查有关控制在体细胞重编程过程中控制和维护多能力的过程的当前知识。
披露:DS:Honararia:Syneos Health; Research funding: AbbVie, ADC Therapeutics, Ascentage Pharma, Biomea Fusion, BioNTech SE, BJ Bioscience, Boehringer Ingelheim, Fate Therapeutics, Gilead Sciences, Immuneering, Kura Oncology, MediLink, Mirati Therapeutics, Monopteros Therapeutics, Navire, NGM Biopharmaceuticals, Nimbus治疗学,辉瑞,革命药,交响,Teon Therapeutics,Zielbio;就业和股票/其他所有权利益:德克萨斯肿瘤学/美国肿瘤学。作者披露可以在以下网址找到:https://coi.asco.org/report/viewabstractcoi?id=398934
摘要:细胞命运决定是一个复杂的过程,通常被描述为细胞在崎岖的路径上行进,从 DNA 损伤反应 (DDR) 开始。肿瘤蛋白 p53 (p53) 和磷酸酶和张力蛋白同源物 (PTEN) 是此过程中的两个关键参与者。虽然这两种蛋白质都被认为是关键的细胞命运调节剂,但它们在 DDR 中协作的确切机制仍然未知。因此,我们提出了一个动态布尔网络。我们的模型结合了从 NSCLC 细胞获得的实验数据,是同类模型中的第一个。我们网络的野生型系统显示 DDR 激活 G2/M 检查点,这会触发一系列事件,涉及 p53 和 PTEN,最终导致四种潜在表型:细胞周期停滞、衰老、自噬和细胞凋亡(四稳态动力学)。网络预测与另外两种细胞系(HeLa 和 MCF-7)中的功能增益和损失调查相对应。我们的研究结果表明,p53 和 PTEN 充当分子开关,激活或停用特定通路来控制细胞命运决定。因此,我们的网络有助于直接研究 DDR 中的四重细胞命运决定。因此,我们得出结论,同时控制 PTEN 和 p53 动态可能是增强临床结果的可行策略。
抽象的神经元细胞命运决定因素通过控制基因表达来调节神经元形态和突触连通性来确定神经元的身份。然而,尚不清楚神经元细胞命运决定因素是否具有突触模式形成的有丝分裂功能。在这里,我们在秀丽隐杆线虫的胆碱能运动神经元的瓷砖突触模式中确定了UNC-4同源蛋白及其Corepressor UNC-37/ Groucho的新作用。我们表明,在神经发生过程中不需要UNC-4,而是在有丝分裂后神经元中需要进行适当的突触模式。相比之下,在发育后和有丝分裂后神经元中都需要UNC-37。BAR-1/ B-蛋白突变抑制了UNC-4突变体的突触平铺缺陷,这对CEH-12/ HB9的表达进行了积极调节。异位CEH-12表达部分是UNC-4和UNC-37突变体的突触缺陷的基础。我们的结果揭示了神经元细胞命运决定因素在突触模式形成中通过抑制规范Wnt信号通路的新颖新颖的作用。
微/纳米塑料越来越被认为是陆地生态系统中普遍存在的污染物,尤其是在土壤中。土壤中微/纳米塑料的命运取决于多种因素,包括土壤特性、pH 值、有机物含量、水分含量和微生物活动等。研究表明,微/纳米塑料可以保留在土壤基质中,影响其降解速率和运输潜力。微/纳米塑料可能会发生碎裂或聚集,从而改变其环境行为。此外,微/纳米塑料会破坏土壤生态群落,可能导致微生物多样性降低和养分循环改变。本期特刊旨在扩展土壤中微/纳米塑料的当前研究现状。一些潜在主题包括土壤中微/纳米塑料的命运、环境微/纳米塑料的风险评估以及微/纳米塑料对土壤生态系统的影响。欢迎撰写有关我们目前对土壤中微塑料的命运和环境影响的了解的研究、评论和意见文章。
成年肠是一个区域化器官,其大小和细胞组成是根据营养状态调整的。这涉及肠道干细胞(ISC)增殖和分化的动态调节。Nu-Trient信号如何控制细胞命运决策以驱动细胞类型组成的区域变化尚不清楚。在这里,我们表明肠道营养适应涉及细胞大小,细胞数和分化的区域特异性控制。我们发现MTOR复合物1(MTORC1)的激活以特定于区域的方式增加了ISC的大小。mTORC1活性促进了三角洲表达,将细胞命运引导到吸收性肠细胞谱系,同时抑制分泌的肠肠分离细胞分化。在老化的苍蝇中,ISC MTORC1信号被解剖,组成型高且对饮食无反应,可以通过终身间歇性禁食来缓解这种饮食。总而言之,MTORC1信号传导有助于ISC命运决策,从而使肠道细胞分化的区域控制对营养。
Shinya Yamanaka 是京都大学 iPS 细胞研究与应用中心 (CiRA) 主任、旧金山格拉德斯通心血管疾病研究所高级研究员和加州大学旧金山分校解剖学教授。Yamanaka 在京都大学 iPS 细胞研究与应用中心 (CiRA) 计划了一项为期五到六年的研究项目,研究诱导多能干细胞 (iPS) 的分子机制和应用。CiRA 聘请了一位年轻的教员 Saito 博士来推动使用基于合成 RNA 的基因操作技术控制细胞命运的研究。他的实验室开发了独特的合成 RNA 分子,以检测和纯化源自 iPS 细胞的靶细胞,并根据细胞内环境控制靶细胞的命运。他负责以下研究项目:开发使用人工 RNA 开关和电路以高安全性和纯度控制哺乳动物细胞命运的新方法。这些 RNA 系统检测靶细胞中表达的特定蛋白质和/或 RNA,然后控制基因表达。
Jennifer Wortman Vaughan Microsoft Research,纽约市jenn@microsoft.com 300 lafayette Street jenn@jennwv.com纽约,纽约,纽约,纽约10012 http://jennwv.com 2024年5月更新了我对人与AI系统之间的互动感兴趣的研究兴趣。近年来,我一直专注于这种互动,这是Microsoft的Fate Group和Microsoft透明度工作组的一部分。以前,我经常在预测市场和其他众包系统的背景下研究这种互动。我的研究背景是机器学习和算法经济学。但是,由于人们在机器学习生命周期中发挥的核心作用,我现在将人类受试者实验甚至定性方法编织到我的研究中,以更好地了解社会技术系统中的人类行为。宾夕法尼亚州费城宾夕法尼亚州教育大学
- 水文研究(径流,城市系统中的转移,水生环境), - 对城市/大坝/接收环境中化学和微生物污染物的排放,命运和影响的生物地球化学研究, - 对水政策,用途,实践及其进化的研究。Leesu实验室重点是分析全球变化(气候,城市规划和建筑,法规,实践,用途,管理方法)对城市环境中水和污染物的流动的影响,从降水到接收环境中的命运。Leesu的研究围绕三个主题进行结构:1。可持续水和城市管理的创新2.城市水管理系统的功能,弹性和适应3。生态系统和自然资源