升降舵是飞行控制表面,通常位于飞机后部,用于控制飞机的俯仰、迎角和机翼升力。最关键的驱动装置是纵向飞机控制,其故障将导致灾难性的飞机坠毁。本文提出了一种飞机高冗余容错控制 (HRFTC) 策略,以适应关键传感器和执行器的故障。针对传感器提出了改进的三重模块冗余 (MTMR),针对执行器提出了双重冗余 (DR)。详细说明了控制律、飞行员命令、信号调节和故障的工作原理。此外,PID 控制器用于通过将升降舵位置与设定点进行比较来调整升降舵位置。结果表明,当发生故障时,系统成功检测到故障并快速容忍故障,而不会干扰飞机的飞行。这项研究对于航空电子行业制造高度可靠的机器以确保人身和环境安全具有重要意义。
嵌入式系统的广泛部署对我们的社会产生了重大影响,因为它们在许多关键的实时应用中与我们的生活相互作用。通常,用于安全或任务关键型应用(例如航空航天、航空电子、汽车或核领域)的嵌入式系统在恶劣的环境中工作,在这些环境中,它们会频繁遭受瞬态故障,例如电源抖动、网络噪声和辐射。它们还容易受到设计和生产故障导致的错误的影响。因此,它们的设计目标是即使在发生错误的情况下也能保持及时性和功能正确性。容错对于实现可靠性起着至关重要的作用,而设计有效和高效的容错机制的基本要求是潜在故障及其表现的现实和适用模型。在这种情况下需要考虑的一个重要因素是故障和错误的随机性,如果在时序分析中通过假设严格的最坏情况发生场景来解决这些问题,可能会导致不准确的结果。同样重要的是,通过有效利用可用资源实现容错,解决嵌入式系统的功率、重量、空间和成本限制。本论文提出了一个框架,用于设计可预测的可靠嵌入式实时系统,同时解决及时性和可靠性问题。它提出了一系列容错策略,特别是针对嵌入式实时系统。通过考虑系统构建块的不同关键性级别,可以实现高效的资源利用。容错策略与所提出的概率可调度性分析技术相辅相成,这些技术基于全面的随机故障和错误模型。
本《手册》由美国国家航空航天局 (NASA) 出版,作为一份指导文件,为定义、开发、分析、评估、测试和操作飞行系统的故障管理 (FM) 元素提供指导方针和建议。它建立了在任务整个生命周期内开发 FM 的流程,并为将该领域推向正式且一致的 FM 方法论奠定了基础,以应用于未来的计划。NASA 科学任务理事会的发现和新前沿计划办公室和总工程师办公室的 NASA 工程与安全中心 (NESC) 共同赞助了本《手册》的开发,这是向全机构 FM 手册迈出的第一步。因此,最初的重点是解决科学任务所需的 FM。大家认识到 FM 与所有 NASA 理事会都息息相关,并且最终本《手册》应满足该机构的需求。为了准备扩大范围,作者努力制定一个大纲,确定所有理事会的 FM 相关需求和目标,目的是航空研究任务理事会和人类探索和操作任务理事会的内容将在本手册的未来修订版中完成。NASA 总部和 NASA 中心(包括组件设施和技术与服务支持中心)批准使用本手册。信息、更正或补充请求
本文开发的三种技术的结构使得其切换机制的复杂性仅随模块数量线性增长,但投票机制的复杂性显著增加。这种方法比那些切换复杂性显著增加而投票者的复杂性保持不变或随模块数量线性增长的方案更好,因为实现复杂的投票者比实现复杂的切换更容易(投票者具有更规则的结构)。
本研究开发的三种技术的结构使得其切换机制的复杂性仅随模块数量线性增长,但投票机制的复杂性显著增加。这种方法比切换复杂性显著增加而投票者复杂性保持不变或随模块数量线性增长的方案更好,因为实现复杂的投票者比实现复杂的切换更容易(投票者的结构更规则)。
60 摘要:故障树在系统的可靠性和安全性分析中起着主导作用。手动构建故障树是一项非常耗时的任务,而且它不会给出正式的结果,因为它高度依赖于分析师的经验和启发式方法。这就需要计算机化的故障树构建,这仍然吸引着可靠性分析师的兴趣。AFTC 软件是一种用户友好的软件模型,用于基于决策表构建故障树。软件配备了各种核电站 (NPP) 系统中常用组件的决策表库。用户需要根据可用的流程图制作要构建故障树的系统的节点图。文本节点图是定义系统流程图的唯一输入。AFTC 软件是一个基于规则的专家系统,它从系统流程图和组件决策表中绘制故障树。AFTC 软件以文本和图形格式提供故障树。提供有关如何输入系统流程图和组件决策表的帮助。该软件是用 C 语言开发的。软件通过印度 PHWR 消防水系统的简化版本进行验证。将进行代码转换以创建基于窗口的版本。