图 1:EDT-DD 参考系草图。左上角的插图显示了 EDT-DD,为了使图更清晰,FB 的原点未置于质心。左下角的插图显示了轨道平面。
图1b显示了提出的三切口T型(3S-TT)桥腿,其开关节点SW 1可以与正,中或负轨道绑定,即中间或负轨,即𝑉in,p = in,p =𝑉in,n =𝑉n = in = in n = the,在相同的双极和/或三级输出电压能力中,与fb相同。与常规的TT桥腿[13],[14]不同,中点开关S F,1用标准的GAN晶体管实现,而不是通过两个这样的晶体管的抗序列连接或单一的双向交换机[15] - [17]。由于通常是非常低的直流电压,通常是p≤2v和/或𝑉in,n≤2v:1c,只要gan hemt的基本(功能)对称性可以支撑负耗压电压𝑉ds <0,只要栅极少量电压𝑉gd gd t - ds> - ds> ds> - (𝑉ds> ds> ds> ds> ds> ds> - 𝑉t-t- t- t- gs)。因此,可以使用负栅极源电压𝑉gs在一定程度上增加反向阻塞能力。1,2有利地,在任何给定时间,在载荷电流路径(即与负载串联)中只有一个开关,而不是在FB的情况下而不是两个开关。因此,考虑到每个位置的相同数量的晶体管,提出的3S-TT将传导损失减少至少两个。3图进一步注意到,在3S-TT中,从S HS,1到中点开关S F的换向,1涉及低侧开关的反行二极管,如缩放波形所示。即,2进一步显示了FB的关键波形和提议的3S-TT相模块(即,在以下内容中考虑了𝑁pH = 1),在下面考虑了相同的输出电压以及(总数)串联电感器和输出滤波器套管器的相同需求和应力(请注意3S-TT的设备开关频率是3S-TT的设备开关频率是FB,但)。
fb。对APA样式中网站的引用包括作者的名称,出版年,标题,检索网站的日期以及URL。作者可以是一个人,公司或组织(例如本练习中的USGB)。
来源:Ahmad FB,Rossen LM,Sutton P.临时药物过量死亡人数。国家卫生统计中心。2021。Mattson,Tanz,Quinn,Kariisa,Patel和Davis(2021)。 mmwr。 70(6),202Mattson,Tanz,Quinn,Kariisa,Patel和Davis(2021)。mmwr。70(6),202
几十年来,人们对 SOI 器件进行了广泛的研究,并将其应用于多种应用:具有厚硅膜(>60nm)的部分耗尽 SOI 器件用于 RF-SOI 应用 [1],而具有薄 SOI 膜(<10nm)的全耗尽 SOI 器件用于 RF、数字和更多 Moore 应用 [2-4]。已知 PD-SOI 器件中会发生浮体 (FB) 效应 [5-6],可以通过体接触消除 [7-8],而 FD-SOI 器件由于具有薄 SOI 膜,因此不受 FB 效应的影响。最近,已经提出了在薄 BOX 上具有相对较薄的薄膜(22nm)的 SOI 器件,以满足 3D 顺序积分的成像器应用要求 [9],其中 SOI 膜掺杂可用于 Vt 居中。本文的目的是确定这种 SOI 器件的操作,并提出相应的 TCAD 描述,考虑 SOI 膜掺杂。
Entwicklung einer rückführbar hochgenauen Hochspannungsteiler-Messsystem- Kombination mit integrierter automatischer Selbstkalibrierung → BMWi, Bundesministerium für Wirtschaft und Energie (ZIM “Zentrales Innovationsprogramm Mittelstand”) Johann Meisner 博士 (FB 2.3/ AG) 2.32 高级制造技术 (Hochspannungsmesstechnik)
•根据Forester ET所描述的方法,使用FB在96孔微量滴定板中使用FB进行了杀死测定。al。3带有修改。接种物由90 µL 10°CFU/mL细菌悬浮液组成。将板在37°C下在5%CO 2的加湿环境中以200 rpm的速度孵育4小时,以使细菌达到生长的对数阶段。在初始生长阶段后,将10 µL的10倍药物稀释液(4×和16倍模料肉汤微稀释液以及在头孢曲松易感性断裂点≤0.25µg/mL(0.5 µg/ml)上方的1.25 µg/ml(0.5 µg/ml)上方,在适当的情况下为每个所需的效果均添加了每卷。另外,将10 µL的FB添加到用作阳性对照的井中。在时间-4小时(接种时间),0小时(添加药物的时间),2小时,4小时,6小时和24小时,使用限制稀释方法来监测细菌的生长。在每个时间点,使用16个连续稀释度确定CFU/ML,并通过移液从每个条件/稀释度中混合63 µL,通过移液稀释。第一次稀释中的生长代表23 cfu/ml(7.3×3.17),并且每个连续稀释的生长代表7.3×3.17(n)CFU/ml(n平均稀释度)。在时间杀死测定之前对28小时的细菌生长进行了验证,以确保在整个实验期间可以保持适当的生长。
摘要:高效的植物转化和组织培养方法对于植物的遗传工程和先进的分子育种至关重要,但在栽培的八倍体草莓 (Fragaria × ananassa) 中,这两种方法都尚未得到很好的建立。在本研究中,针对两个基因不同的草莓品种 Sweet Sensation VR Florida 127 (FL127) 和 Florida Brilliance (FB) 建立并优化了一种芽再生方法。从温室生长的植物中获得的尖端、节点和叶柄的匍匐茎段被用作外植体,用于比较芽再生率。'FL127' 在优化条件下显示出最高的芽再生频率,而'FB' 在相同培养基类型中对较低浓度的 N6-苄基腺苷 (BA) (0.01 mg/L) 的反应最佳。 'FL127' 和 'FB' 中体细胞胚从匍匐茎尖 (RT) 向芽再生的平均转化频率分别为 42.8% 和 56.9%。利用这些优化的组织培养条件,进行农杆菌介导的 CRISPR/Cas9 基因编辑,以检查品种 FL127 中八氢番茄红素去饱和酶 FaPDS 的转化和靶基因编辑效率。总共 234 个外植体接种了含有 Cas9-FaPDS 的农杆菌,导致愈伤组织诱导效率为 80.3%,其中 13.3% 的再生植物表现出部分或完全的白化表型。编辑子代的扩增子测序表明,所有 FaPDS 同源拷贝的向导 RNA (gRNA) 靶位点或侧翼区域均发生了突变(替换、插入和缺失)。我们的研究结果为草莓功能基因组学研究和基因编辑指导的品种改良提供了有效的组织培养和转化方法。
● 考虑到引入的透明度框架,您对 FB 透明度报告的实施有什么疑问?是否还有需要透明化的事情?● 您认为透明度报告有效吗?为什么有效或无效?● 您可以对实施提出哪些批评?● 您认为有哪些设计机会可以改进报告?● 您还想分享哪些其他观察结果?