摘要 — 在本研究中,我们研究了双栅极反馈场效应晶体管 (FBFET) 器件的温度相关行为,该器件在一定温度范围 (300 K 至 400 K) 内表现出陡峭的开关特性。我们使用技术计算机辅助设计 (TCAD) 模拟分析温度特性。FBFET 是在正反馈回路中工作的半导体器件,其中通道区域中的电子和空穴调节势垒和壁的能量状态。FBFET 表现出出色的亚阈值摆幅和高开/关比,这归因于正反馈现象,从而产生理想的开关特性。在模拟结果中,观察到随着温度的升高,导通电流 (I ON )、关断电流 (I OFF ) 和导通电压 (V ON ) 均增加,而开/关电流比降低。此外,通过调节固定栅极电压可以维持高温下的操作。通过模拟结果,我们定性地研究了 FBFET 中各种器件参数随温度变化的变化,并进行了详细讨论。
数十年来,由于摩尔法律[1],互补金属 - 氧化物半导体(CMOS)技术的连续扩展导致了信息技术的革命性发展,该法律规定,微芯片的密度每24个月增加了一倍。但是,由于由短通道效应等现象引起的泄漏电流,MOS场效应晶体管(MOSFET)会遇到限制[2]。尤其是由于载体的热极限,在室温下,子阈值秋千的极限为60 mV/dec [3]。使用隧道效应,使用影响电离的电离效果(i-MOS)[8-11]等各种设备,例如使用影响电离的电离MOS(I-MOS)[8-11] [12-24] [12-24] [12-24]使用反馈现象来克服这些限制。fbfet通过调节诸如p-n-p-n之类的结构中的潜在屏障,使用正反馈机制表现出陡峭的开关特性。第一次提出的FBFET通过将电荷捕获在栅极侧壁间隔物中来调节电势垒。然而,由于间隔区域的附加过程和不稳定性,已经提出了结构,以浓重的掺杂掺杂现有的间隔区区域,或用额外的栅极电极代替它[14,15]。这些结构相对稳定,可以在带有附加栅极电极的单个设备中重新配置p和n型[13]。但是,对于在P和N型操作模式中重新配置的四端设备结构的其他门电压调制是必需的。在这项研究中,我们提出了一个可重新选择的FBFET,可以通过控制单门电压调制来以P和N型模式进行操作。单门电压允许注射孔(P型)或电子(N型),以进行正反馈回路。与其他可重新配置的FET(RFET)[25-29]相反,该FET(25 - 29])通过阻碍注射不希望的荷载体,对电子和孔显示单极传导,可重新选择的FBFET使用电子和孔进行电流。因此,我们的设备表现出对P和N型配置的对称特征。