摘要 — 了解好奇心背后的神经生理机制并因此能够识别一个人的好奇心水平,将为神经科学、心理学和计算机科学等众多领域的研究人员和设计师提供有用信息。揭示好奇心的神经相关性的第一步是在好奇状态下收集神经生理信号,以便开发信号处理和机器学习 (ML) 工具来识别好奇状态和非好奇状态。因此,我们进行了一项实验,其中我们使用脑电图 (EEG) 测量参与者在被诱导进入好奇状态时的大脑活动,使用琐事问答链。我们使用两种 ML 算法,即滤波器组公共空间模式 (FBCSP) 与线性判别算法 (LDA) 相结合,以及滤波器组切线空间分类器 (FBTSC),以将好奇的 EEG 信号与非好奇的 EEG 信号进行分类。总体结果表明,两种算法在 3 到 5 秒的时间窗口内均获得了更好的性能,表明最佳时间窗口长度为 4 秒(FBTSC 的分类准确率为 63.09%,FBCSP+LDA 的分类准确率为 60.93%)可用于基于 EEG 信号的好奇心状态估计。索引术语 — 好奇心 - 心理状态 - 学习 - 脑电图 - 被动脑机接口
摘要 - 高时间分辨率和不对称空间激活是大脑中脑电图(EEG)的基本属性。为了学习脑电图对准确和普遍的情绪识别的时间动态和空间不对称性,我们提出了Tsception,这是一种多尺度的卷积神经网络,可以从EEG分类情绪。tsception由动态时间,不对称空间和高级融合层组成,它们同时学习时间和通道尺寸。动态时间层由多尺度的1D卷积内核组成,其长度与EEG的采样率有关,EEG学习了EEG的动态时间和频率表示。不对称的空间层利用了情绪的不对称脑电图模式,学习歧视性的全球和半球表示。学习的空间表示将被高级融合层融合。使用更广泛的交叉验证设置,在两个公开可用的数据集DEAP和MAHNOB-HCI上评估了所提出的方法。将所提出的网络的性能与先前报道的方法(例如SVM,KNN,FBFGMDM,FBTSC,无监督学习,DeepConvnet,ShallowConvnet和Eegnet)进行了比较。tsception达到了更高的分类精度和F1评分。这些代码可在以下网址提供:https://github.com/yi-ding-cs/tseption
摘要— 高时间分辨率和不对称空间激活是脑电图 (EEG) 的基本属性,是大脑情绪过程的基础。为了学习 EEG 的时间动态和空间不对称性以实现准确和广义的情绪识别,我们提出了 TSception,这是一种可以从 EEG 中对情绪进行分类的多尺度卷积神经网络。TSception 由动态时间、不对称空间和高级融合层组成,它们同时学习时间和通道维度中的判别表示。动态时间层由多尺度 1D 卷积核组成,其长度与 EEG 的采样率有关,它学习 EEG 的动态时间和频率表示。不对称空间层利用情绪的不对称 EEG 模式,学习判别性全局和半球表示。学习到的空间表示将由高级融合层融合。使用更通用的交叉验证设置,在两个公开可用的数据集 DEAP 和 MAHNOB-HCI 上评估所提出的方法。将所提出的网络的性能与 SVM、KNN、FBFgMDM、FBTSC、无监督学习、DeepConvNet、ShallowConvNet 和 EEGNet 等先前报告的方法进行了比较。在大多数实验中,TSception 的分类准确率和 F1 分数高于其他方法。代码可在以下位置获得:https://github.com/yi-ding-cs/TSception
摘要 — 高时间分辨率和不对称空间激活是脑电图 (EEG) 的基本属性,是大脑情绪过程的基础。为了学习 EEG 的时间动态和空间不对称性以实现准确和广义的情绪识别,我们提出了 TSception,这是一种可以从 EEG 中对情绪进行分类的多尺度卷积神经网络。TSception 由动态时间、不对称空间和高级融合层组成,它们同时学习时间和通道维度中的判别表示。动态时间层由多尺度 1D 卷积核组成,其长度与 EEG 的采样率有关,它学习 EEG 的动态时间和频率表示。不对称空间层利用情绪的不对称 EEG 模式,学习判别性全局和半球表示。学习到的空间表示将由高级融合层融合。使用更通用的交叉验证设置,在两个公开可用的数据集 DEAP 和 MAHNOB-HCI 上评估所提出的方法。将所提出的网络的性能与 SVM、KNN、FBFgMDM、FBTSC、无监督学习、DeepConvNet、ShallowConvNet 和 EEGNet 等先前报告的方法进行了比较。在大多数实验中,TSception 的分类准确率和 F1 分数高于其他方法。代码可在以下位置获得:https://github.com/yi-ding-cs/TSception
从脑信号中估计认知或情感状态是创建被动脑机接口 (BCI) 应用程序的关键但具有挑战性的一步。到目前为止,从 EEG 信号中估计心理工作量或情绪仅在中等分类准确度下可行,因此导致不可靠的神经自适应应用。然而,最近的机器学习算法,特别是基于黎曼几何的分类器 (RGC) 和卷积神经网络 (CNN),已显示出对其他 BCI 系统(例如运动想象-BCI)的前景。然而,它们尚未在认知或情感状态分类方面进行正式研究和比较。因此,本文探讨了此类机器学习算法,提出了它们的新变体,并与经典方法对它们进行了基准测试,以从 EEG 信号中估计心理工作量和情感状态(效价/唤醒)。我们研究了这些方法,同时进行了受试者特定和受试者独立的校准,以走向无校准系统。我们的结果表明,在心理负荷研究的两种条件下,CNN 的平均准确率最高,尽管差异并不显著,其次是 RGC。然而,对于情绪数据集(一个训练数据较少的数据集),同一个 CNN 在两种条件下的表现都不佳。相反,事实证明,使用我们在本文中介绍的滤波器组切线空间分类器 (FBTSC),RGC 具有最高的平均准确率。因此,我们的结果有助于提高从 EEG 进行认知和情感状态分类的可靠性。它们还提供了有关何时使用哪种机器学习算法的指导。