本出版物是联合研究中心 (JRC) 的技术报告,该中心是欧盟委员会的科学和知识服务机构。它旨在为欧洲政策制定过程提供基于证据的科学支持。所表达的科学成果并不意味着欧盟委员会的政策立场。欧盟委员会或代表委员会行事的任何人均不对本出版物的使用负责。有关本出版物中使用的数据的方法和质量的信息(其来源既不是欧盟统计局也不是其他委员会服务机构),用户应联系引用的来源。地图上使用的名称和材料的呈现方式并不意味着欧盟对任何国家、领土、城市或地区或其当局的法律地位,或对其边界或边界的划定发表任何意见。联系信息姓名:Jonathan Davies 电子邮件:jonathan.davies@ec.europa.eu 欧盟科学中心 https://ec.europa.eu/jrc JRC121704 EUR 30648 EN
摘要:糖尿病性视网膜病(DR)是糖尿病的并发症,会损害视网膜细腻的血管并导致失明。眼科医生通过对眼底进行成像来诊断视网膜。该过程需要很长时间,需要熟练的医生来诊断和确定DR的阶段。因此,使用人工智能的自动技术在分析底眼图像以检测DR开发阶段的过程中起着重要作用。但是,使用人工智能技术的诊断是一项困难的任务,并且经过许多阶段,而提取代表性特征对于达到令人满意的结果很重要。卷积神经网络(CNN)模型在高精度提取特征中起着重要而独特的作用。在这项研究中,使用两种建议的方法,将眼底图像用于检测DR的发育阶段,每个方法都有两个系统。第一个提出的方法将Googlenet与SVM和RESNET-18一起使用SVM。第二种方法基于使用GoogLenet,模糊颜色直方图(FCH),灰度级别共发生矩阵(GLCM)和局部二进制图案(LBP)提取的杂种特征,使用前馈神经网络(FFNN);然后是RESNET-18,FCH,GLCM和LBP。所有提出的方法获得了较高的结果。具有RESNET-18,FCH,GLCM和LBP的混合特征的FFNN网络获得了99.7%的精度,精度为99.6%,敏感性为99.6%,特异性100%和99.86%的AUC。
本报告是美国能源部 (DOE) 燃料电池技术办公室、美国运输部 (DOT) 海事管理局 (MARAD) 和欧盟燃料电池和氢能联合组织 (FCH JU) 于 2019 年 9 月 10 日至 12 日在加利福尼亚州旧金山海军陆战队纪念俱乐部和酒店举办的 H2@Ports 研讨会的会议记录。研讨会旨在确定机遇、采用障碍和研究需求,以加速氢能和燃料电池系统在海事应用中的技术开发和行业商业化。来自工业界、政府和学术界的专家和利益相关者齐聚一堂,讨论了当前氢能和燃料电池技术的最新进展以及在港口和船上海事应用中使用这些技术的要求。本报告总结了研讨会上的讨论和表达的不同意见。
通常,“安全”一词被称为新兴FCH技术的“非技术”障碍。但是,在将这些技术推向市场之前,需要解决一些工程挑战。其中之一是将氢气火焰长度从FC车载储存中的10-15 m的当前值减少,以允许撤离和营救乘客及其对响应者的保护。另一个重要的未解决的问题是将板载氢储罐的火力抗性从1-7分钟(IV型型容器的电流值)提高,以使更长的时间降低储罐的时间。这将防止意外释放期间的民用结构(例如车库)严重损坏。此外,它甚至排除了隧道内部大型氢气云形成的机会,这在火灾的情况下会导致整个隧道的死亡人数。氢储罐的较高耐火等级将允许
摘要 - 我们已经设计了多表面Halbach高温超导体 - 永久磁导向道(HTS- PMG)的磁悬浮运输(MAGLEV)的布置(MAGLEV),并研究了动态响应特性外还研究了静态力参数。使用三种不同的HALBACH HTS – PMG排列与多面(6 HT,4 HTS),并在三个不同的冷却高度(FCHS)中进行静态和动态测量。使用多表面HALBACH HTS -PMG排列获得了较大的垂直载荷能力和更宽的载荷间隙。此外,多面排列的指导力值的近四倍是单个侧面的指导力值,这表明多面排列中的侧面HTSS对指导力有显着贡献,因此磁磁系统的横向运动稳定性。垂直和横向动态刚度值都随着FCH的降低而增加,也可以说,磁磁系统的动态刚度性能可以增强,尤其是通过使用多表面HALBACH HTS -PMG布置在侧向方向上。通过系统的2-D近似来支持这些实验观察结果。我们表明,通过使用单个材料参数(临界电流密度J C)进行整个超导组,可以令人满意地预测完整的一系列实验。从这项研究获得的静态和动态参数和
ACC 美国心脏病学会 ACS 急性冠状动脉综合征 AHA 美国心脏协会 ALT 丙氨酸转氨酶 Apo 载脂蛋白 APOB 载脂蛋白 B 100 分子 ASCVD 动脉粥样硬化性心血管疾病 BP 血压 CA 冠状动脉造影 CCP 锡兰内科医师学会 CT CA CT 冠状动脉造影 CABG 冠状动脉搭桥术 CAC 冠状动脉钙化积分 CAD 冠状动脉疾病 CK 肌酐激酶 CKD 慢性肾病 CRP C 反应蛋白 CVD 心血管疾病 CVA 脑血管意外 CYP 细胞色素 P450 CYP3AS 细胞色素 P450,家族 3,亚家族 A 人类基因座 DM 糖尿病 DHA 二十二碳六烯酸 DNA 脱氧核糖核酸 DVD 双血管疾病 ESC 欧洲心脏病学会 EAS 欧洲动脉粥样硬化学会 EPA 二十碳五烯酸酸 eGFR 估计肾小球滤过率 FBS 空腹血糖 FH 家族性高胆固醇血症 FCH 家族性混合性高脂血症 GI 胃肠道 HbA1C 血红蛋白 A 1 C HDL 高密度脂蛋白 HDL-C 高密度脂蛋白胆固醇 HeFH 杂合子家族性高胆固醇血症 HoFH 纯合子家族性高胆固醇血症 HIV 人类免疫缺陷病毒
3D立方混合有机无机性钙钛矿具有ABX 3组成,其中A是有机阳离子,B是金属阳离子,X是卤素阴离子,由于其半导体特性引起了极大的关注。例如,这些材料已经用于生产太阳能电池1,在激光2中,LED 3,作为闪烁体4,用于X射线检测5等。3D混合钙棍需要小的有机阳离子以满足几何需求,并且很少有适当尺寸的有机阳离子。今天研究和应用最多的3D混合钙壶是Mapbhal 3和Fapbhal 3,其中MA =甲基铵,6 Fa = formamidinium,7 Hal = Cl,Br和I.还可以支持(MHY)PBCL 3 8-11和(MHY)PBBR 3 10-12,以及FCH 2 NH 3 PBBR 3 PBBR 3 13的3D结构。乍一看,在阳离子上独立于立方3D混合钙化物的性质相似,但是通过有机阳离子的变化,精确达到了许多重要的成就,即更高的太阳能细胞收获效率,14抑制多态性,15个光燃料散发型,15个光燃料带移位,16个非线性光学特性的外观,非线性光学特性8,12。最近,我们报道了新化合物(AZRH)PBHAL 3(AZRH = Aziridinium Cation,HAL = Cl,Br,I)的合成,似乎是经典的半导体立方体钙钛矿。17拉曼
全球范围内,能源系统正在向更可持续的系统过渡。根据《欧洲氢能路线图》(FCH EU,2019),氢能将在未来能源系统中发挥重要作用,因为它能够支持可持续发展目标,并将在未来占总能源结构的约 13%。因此,正确的氢供应链 (HSC) 规划对于实现可持续转型至关重要,尤其是当使用可再生能源(可再生氢)的电力通过水电解生产氢时。然而,由于可再生 HSC 的运行特性,其规划很复杂。可再生氢供应可以是多种多样的:氢可以利用风能和太阳能等可再生能源分散生产,也可以利用大量水力发电厂的电力集中生产。同样,对氢的需求也可以是多种多样的,有许多新的应用,例如燃料电池电动汽车和发电的燃料、工业过程中的原料以及建筑物供暖。 HSC 包括不同形式的各种阶段(生产、储存、分配和应用),相互依赖性很强,这进一步增加了 HSC 的复杂性。最后,HSC 的规划取决于氢气采用和市场开发的状况,以及技术的成熟度,这两个因素都具有高度不确定性。直接采用传统的 HSC 供应链 (SC) 规划方法是不够的。因此,在本研究中,我们开发了一个规划矩阵和相关规划任务,利用系统的文献综述来应对 HSC 的特点。我们只关注可再生氢,因为它与未来的低碳经济息息相关。此外,我们从供应链管理的角度概述了未来研究的议程,以支持可再生 HSC 的发展,同时考虑到可再生 HSC 的采用和市场开发的不同阶段。