我们开发了两种型号的自主控制器,作为 STARDOM 网络制造解决方案的核心:FCN(现场控制节点的缩写)是一种具有出色可扩展性的模块化控制器,而 FCJ(现场控制连接点的缩写)是一种专为分布式现场安装而设计的一体式控制器。两种控制器都采用了“开放”和标准化技术,并具有实现符合国际电工委员会 IEC61131-3 标准的控制逻辑的功能以及基于 Web 的通信功能,例如自主电子邮件传输和与网页通信,所有这些都包含在紧凑而坚固的机身中。这些功能实现了最新网络技术的全面实用、稳定运行的高可靠性架构以及提高工程效率以及灵活应对系统变化的功能。
请参阅正在更新的节点,然后是其更新的值。改编自Battaglia等人。(2018)。(c和d)描述边缘预测模型(C)和中心性预测模型(D)中的步骤,其中表示fcn更新的fcn更新功能,而边缘和2个连接的节点表示为输入,代表了fcn更新功能,用于以节点为单位和相互连接的edge的fcn更新功能,并代表输入和代表Edde exgentions grotection exgents grotection。改编自Battaglia等人。(2018)。
摘要:功能连接网络(FCN)已成为识别脑功能障碍(如自闭症谱系障碍(ASD))潜在生物标志物的常用工具。由于其重要性,研究人员提出了许多从静息态功能磁共振(rs-fMRI)数据估计FCN的方法。然而,现有的FCN估计方法通常仅捕获大脑感兴趣区域(ROI)之间的单一关系,例如线性相关、非线性相关或高阶相关,因此无法对大脑中ROI之间的复杂相互作用进行建模。此外,此类传统方法以无监督的方式估计FCN,并且估计过程独立于下游任务,这使得难以保证ASD识别的最佳性能。为了解决这些问题,本文提出了一种基于rs-fMRI的ASD分类多FCN融合框架。具体而言,对于每个受试者,我们首先使用不同的方法估计多个FCN,以从不同角度编码ROI之间的丰富相互作用。然后,我们使用标签信息(ASD 与健康对照 (HC))来学习一组融合权重,以衡量这些估计的 FCN 的重要性/区分度。最后,我们将自适应加权融合 FCN 应用于 ABIDE 数据集,以从 HC 中识别出患有 ASD 的受试者。提出的 FCN 融合框架易于实现,与传统和最先进的方法相比,可以显著提高诊断准确性。
本文提出了一种功能连接网络 (FCN) 分析框架,用于对静息态功能磁共振成像 (rs-fMRI) 数据进行脑部疾病诊断,旨在减少噪声、受试者间差异和受试者间异质性的影响。为此,我们提出的框架研究了一种多图融合方法来探索两个 FCN,即全连接 FCN 和 1 最近邻 (1NN) FCN 之间的共同信息和互补信息,而之前的方法仅侧重于从单个 FCN 进行 FCN 分析。具体而言,我们的框架首先进行图融合以生成具有高判别能力的 rs-fMRI 数据表示,然后使用 L1SVM 联合进行脑部区域选择和疾病诊断。我们进一步评估了所提框架在各种神经疾病数据集上的有效性,例如额颞叶痴呆症 (FTD)、强迫症 (OCD) 和阿尔茨海默病 (AD)。实验结果表明,与最先进的 FCN 分析方法相比,所提框架通过为分类任务选择合理的大脑区域实现了最佳诊断性能。
摘要 — 在电路设计领域,与传统的基于晶体管的逻辑相比,场耦合纳米技术 (FCN) 等新兴技术提供了独特的机会。然而,FCN 也带来了一个关键问题:线路交叉对电路稳健性的重大影响。这些交叉要么无法实现,要么会严重降低信号完整性,对高效电路设计造成重大障碍。为了应对这一挑战,我们提出了一种新方法,专注于减少 FCN 电路中的线路交叉。我们的方法引入了 LUT 映射和分解的组合,旨在在逻辑综合过程中产生有利的网络结构,以最大限度地减少线路交叉。这个新的优化指标优先于节点数和关键路径长度,以有效应对这一挑战。通过实证评估,我们证明了所提出方法的有效性,可将线路交叉的第一次近似值降低 41%。69%。这项研究为推进新兴电路技术中的线路交叉优化策略做出了重大贡献,为后 CMOS 逻辑时代更可靠、更高效的设计铺平了道路。
图1:海洋雾过程 - 前流大陆或海洋吸气气溶胶作为FCN。通过蒸气的扩散沉积(插图)在FCN周围生长。Kohler(1936)认为,液滴生长需要超过由表面张力和溶质浓度的相对影响确定的临界半径(分别分别增加/降低了液滴蒸气,分别增加/降低)。最小的湍流(Kolmogorov或K)涡流在ABL中的作用,在该ABL中,FCN被嵌入其中,但尚未了解(插图)。请注意,对于空气,K量表和(Obukhov-Corrsin O-C)温度耗散量表的顺序相同,因此在k涡流或立即周围FCN的温度是同质的。产卵液滴会结合和沉降(插图)。贡献上海的过程/现象包括波浪和破裂,夜间对流,湍流和混合,潮汐和电流。相应的低大气现象包括波边界层以及剪切和对流湍流。在空气界面,湍流,质量,动量和气溶胶交换通过波浪破裂和通过[Molecular]皮肤层的恢复而发生,这会燃烧空气 - 海洋相互作用。短/长波辐射(SWR/LWR)和对流过程也影响海面温度(SST)。MABL的重要贡献来自概要和中尺度[对流]系统,包括前部,高和低点,反转,海面和雾顶的加热/冷却,DIEL循环,云,云,湍流和气溶胶。如果存在,则来自边界混合,上升流,升级的波浪破裂,海洋/海洋[差分]加热和内部边界层(IBL)的沿海贡献对雾生命周期有重大影响。
本手册的内容基于出版时的硬件类型和软件版本规格。功能可能会受到操作硬件和软件组合的限制。请在以下主页上查看。“横河合作伙伴门户”网站:https://partner.yokogawa.com/global/ -> [产品支持信息] - [用于 SCADA 的过程 PLC/RTU] - [系统要求] - [每个版本的系统要求(操作系统、CPU、Web 浏览器)] • 下载每个版本的系统要求(操作系统、CPU、Web 浏览器)列表。-> 自主控制器 FCN/FCJ • FCN/FCJ 软件 Windows10 Pro 发布信息
FCN工作文件号17/2022造型于2022年5月修订的电动汽车能源消耗的波动性和灵活性:Jarusch Muessel Potsdam气候研究所影响研究Telegraphenberg A 31 P.O.box 60 12 03(155)14412 Potsdam Jarusch.muessel@pik-potsdam.de Oliver Ruhnau Hertie SchoolFriedrichstraße180 10117柏林电子邮件:ruhnau@ruhnau@hertie-school.org Aachen UniversityMathieustraße10 52074 Aachen,德国电子邮件:rmadlener@eonerc.rwth-aachen.de
1.将克隆电缆的主开关端(按钮)连接到主电台的侧面连接器。 2.2.从主电台中选择要克隆的组。3.按住主开关,然后按住 [FCN] 键,直到显示屏显示“- - - ID”,将主电台置于编程模式。输入所选组的密码。显示屏显示“PRG CH 00”。4. 在每个 CHXX 提示符下按 [FCN] 或 [ENT] 键,查看电台中编程的值。现在必须进行任何必要的更改。5.将电缆的另一个插头连接到要克隆的收音机的侧面连接器。6.打开克隆并将其设置为所需的频道组。7.按下主收音机键盘上的 [*] 键。显示屏将闪烁“PROG”,表示收音机已准备好将其程序下载到克隆。8.按下主收音机键盘上的 [FCN] 键。当主收音机的信息下载到克隆时,显示屏将闪烁“CLONE”。9.如果成功,主收音机上的显示屏将继续闪烁“PROG”。• 要克隆另一个频道组,请关闭两个无线电并返回步骤 3,根据需要更改频道组。10.如果克隆不成功,主机将显示“FAIL”,并发出多声哔声。失败的原因可能是连接不当、无法打开克隆、将克隆设置为编程模式、组被 PC 编程“锁定”。注意:要停止“FAIL”模式,请按 [CLR],关闭两个无线电,然后重试,从上一页的步骤 1 开始。
1. 将克隆电缆的主开关端(按钮)连接到主电台的侧面连接器。 2. 从主电台中选择要克隆的组。 3. 按住主开关,然后按住 [FCN] 键,直到显示屏显示“- - - ID”,将主电台置于编程模式。输入所选组的密码。显示屏显示“PRG CH 00”。 4. 在每个 CHXX 提示符下按 [FCN] 或 [ENT] 键,查看电台中编程的值。必须立即进行任何必要的更改。 5. 将电缆的另一个插头连接到要克隆的电台的侧面连接器。 6. 打开克隆并将其设置为所需的频道组。 7. 按下主电台键盘上的 [*] 键。显示屏将闪烁“PROG”,表示电台已准备好将其程序下载到克隆中。 8. 按下主电台键盘上的 [FCN] 键。当主机的信息下载到克隆机时,显示屏将闪烁“CLONE”。9. 如果成功,主机上的显示屏将继续闪烁“PROG”。• 要克隆另一个频道组,请关闭两个无线电并返回步骤 3,根据需要更改频道组。10. 如果克隆不成功,主机将显示“FAIL”并发出多声蜂鸣。失败的原因可能是连接不当、无法打开克隆机、将克隆机设置为编程模式、组被 PC 编程“锁定”。注意:要停止“FAIL”模式,请按 [CLR],关闭两个无线电,然后重试,从上一页的步骤 1 开始。