摘要。肠道microbiota -brain轴是一个复杂的bidi剖面通信系统,将胃肠道与大脑联系起来。发现肠道microbobiota的平衡,组成和多样性(肠道断疾病)与精神病的发展有关。早期应激以及在不同发育阶段遇到的各种应激源,已被证明与肠道菌群的异常组成有关,从而导致不规则的免疫学和神经内分泌功能,这可能导致首发精神病(FEP)的发生。目前的叙述性综述的目的是总结患有FEP与健康对照的患者中微生物组组成改变的显着差异,并讨论其对FEP中症状的发生和强度的影响。
:如果您说语言,则可以使用语言援助服务。 div>联系1-3852-253-008 :)聋哑和巴巴文字1-0778-559-008。 div>联系1- 008-333-7222。 div>Attenzione:Qualora Fossse l'alliano la Lingua Parlata,Sono disponibili dei verizi di Assistenza linguisica linguisica gratuiti。 div>Chiamare IL Numero 1-800-352-2583(TTY:1-800-955-8770)。 div>fep:Chiamare Il Numero 1-800-333-227 ACHTUNG:Wenn Sie Deutsch Sprechen,Stehen Ihnen Kostenlos Spachliche Hilfsdienstleistleistungen Zur ZurVerfügung。 div>Ruffnummer: +1-800-352-2583(TTY: +1-800-955-8770)。 div>fep:ruffnummer +1-800-333-227주의:한국어한국어경우언어서비스를이용하실이용하실있습니다있습니다있습니다있습니다있습니다。 div>1-800-352-2583(TTY:1-800-955-8770)로로。 div>FEP:1-800-333-2227로로。 div> uwaga:jeëiMówiszpo polsku,更多 div> ZadzwńPodNumer 1-800-352-2583(TTY:1-800-955-8770)。 div> fep:ZadzwńpodNumer 1-800-333-227。 div> સુચના:જોજોગુજરાતી,તોતો:શુલ્કશુલ્કસેવાતમારામાટેછે。 div>FEP:1-800-333-2227로로。 div>uwaga:jeëiMówiszpo polsku,更多 div>ZadzwńPodNumer 1-800-352-2583(TTY:1-800-955-8770)。 div>fep:ZadzwńpodNumer 1-800-333-227。 div>સુચના:જોજોગુજરાતી,તોતો:શુલ્કશુલ્કસેવાતમારામાટેછે。 div>
我们将如何交付?积极而广泛的与英国,欧盟和全球利益相关者的参与计划,如下所示,在与其他部门的部门业务计划和跨部门策略相关的情况下,由未来经济计划(FEP)(FEP)(FEP)(FEP)和碳中性路线(Carbon Nutral Roadmap)(包括在外境风场开展工作)中的跨部门策略。我们将如何衡量?CPER修订以确保准确性,并结合部长协议和签字理事会 - 7月。年度报告和帐户中针对目标的年度审查。英国的参与继续与英国利益相关者建立积极的长期关系,特别关注英国政府和议员,以确保对泽西岛的宪法地位的理解,我们是我们作为高质量,良好受监管的财务中心的声誉,对英国的经济有着积极的贡献,并与CSP中的部门承诺相一致,从而为英国的经济做出了积极的贡献。我们将如何交付?通过我们的伦敦办公室和国际贸易团队,我们将:
我们喜欢阅读[1]中的自由能原理(FEP)的解构 - 几年前在[2]中引入的。这么说,没有人喜欢被告知他们犯了错误。幸运的是,[1]中的所有观察结果都很有趣,有些是正确的,没有混淆FEP。在接下来的内容中,我们使用了Biehl等人的观察结果。(同上)要深入研究它们提出的有趣点以及在FEP环境中的含义。为了对这些观察进行上下文,我们首先排练了得出FEP的主要步骤,然后专注于Biehl等人中解决的三个基本问题。;也就是说,构成马尔可夫毛毯分区的(子集的)(子集)之间的动态耦合的确切形式是什么?将自我组织解释为自我播种(即贝叶斯推论)时,有什么含义会出现非零的证据?进一步,差异自由能梯度何时消失?这三个问题的第一个出现在Biehl等。分布在他们的观察结果1-3中。第二和第三次出现在观察5和周围的讨论中。Biehl等。 进行几个观察;但是,有些是概括的(例如,在一般运动坐标的背景下)。 他们的观察6是一个例子。 我们忽略了这些观察结果。 请注意,Biehl等人的观测值编号。 是指纸的主要文本中分配的数字,而不是在纸张开头提供的子弹指定列表中的顺序。Biehl等。进行几个观察;但是,有些是概括的(例如,在一般运动坐标的背景下)。他们的观察6是一个例子。我们忽略了这些观察结果。请注意,Biehl等人的观测值编号。是指纸的主要文本中分配的数字,而不是在纸张开头提供的子弹指定列表中的顺序。一个人可以阅读Biehl等。作为对FEP的早期表述的批评 - 与隐性假设和不完整的(启发式)证明有关,反对对FEP本身的批评。但是,他们确定的问题仍然是基本的。[3]中解决了其中一些问题。但是,该专着尚未受到外部同行评审的约束(并且至少包含一个技术错误)。[4]中介绍了贝叶斯力学的简洁版本。在接下来的内容中,我们将使用[3]中的符号和命名法,这是目前对FEP的最全面的处理方法,我们向读者推荐读者以详细申请物理系统。本文的新颖贡献是对动态流的条件的明确规范,以确保马尔可夫毯子有足够的能力。
摘要 - 生活系统既面临环境复杂性,又面临着有限的自由能资源的访问。在这些条件下的生存需要一个可以在上下文中激活或部署可用的感知和行动资源的控制系统。在本第I部分中,我们介绍了自由能原理(FEP)和主动推断作为贝叶斯预测的想法 - 最小化,并显示控制问题是如何在主动推理系统中产生的。然后,我们回顾FEP的经典和量子公式,前者是后者的经典限制。在随附的第二部分中,我们表明,当系统描述为执行由FEP驱动的主动推理时,它们的控制流系统总是可以表示为张量网络(TNS)。我们展示了如何在量子拓扑神经网络的一般框架内实现TNS作为控制系统,并讨论了这些结果对在多个尺度上对生物系统进行建模的含义。
*通过BMBF资助的项目“ Prosist”(FKZ 03XP0130A)与Fraunhofer FEP和Fraunhofer IWS合作实现了结果。有关研发请求,请联系:Fraunhofer有机电子,电子束和等离子体技术研究所(FEP),Winterbergstrasse,德国德累斯顿,Winterbergstrasse 28,01277。Claus Luber先生,电子邮件:claus.luber@fep.fraunhofer.de,电话:+49(0)351 2586 123
抽象的预测处理理论在心理哲学中越来越流行;这种过程理论通常从自由能原理(FEP)获得支持 - 自适应自组织系统的规范原理。然而,关于FEP的哲学解释,例如代表性与非代表性的哲学解释存在当前的辩论。在这里,我们认为这些不同的解释取决于关于限定(或不符合资格)代表性的隐式假设。我们在工具上部署自由能原理(FEP),以区分四个主要的代表概念,分别侧重于组织,结构,内容相关和功能方面。讨论了这些不同方面在产生自由能原理的代表性或非代表性解释方面重要的各种方式。我们还讨论了如何将自由能原理视为一种统一的观点,即传统上属于不同本体论的术语 - 例如,模型和期望的概念与自动载体和同步的概念可以得到协调。但是,本文并没有试图解决代表主义者与非代表性的辩论,并揭示了一些简单的代表权,而是展示了如何使用自由能原则来揭示有关参与辩论的人的事物;也就是说,我们对哪种表示形式的隐藏假设 - 在这个持续的哲学辩论中有时是对立的起点的假设。“严厉地握住它!看到它退回!(是谁?是你吗?)”沃尔特·惠特曼(Walt Whitman)的“手机镜”(1860)简介在计算和系统神经科学上围绕大脑是一种预测机器,它使用内部(生成的)模型来连续生成感知,动作和学习的服务。一种围绕这个想法并迅速获得突出的理论 - 尤其是在心理和认知科学哲学领域 - 预测性处理(PP)(Clark,2013; Hohwy,2013,2020)。自由能原理(FEP)是一项规范性建议,扩展了PP,为其提供了适应性自组织的基本原理(Hohwy,2020)。FEP和相关的预测处理在神经科学之外迅速获得了突出,尤其是在心理哲学领域(Clark,2013; Hohwy,2013,2020)。尽管这一事实,FEP的一些基本含义
自由能原理 (FEP) 指出任何动力系统都可以解释为对其周围环境进行贝叶斯推理。在这项工作中,我们深入研究了在最简单的系统集——弱耦合非平衡线性随机系统中推导 FEP 所需的假设。具体来说,我们探索 (i) 对系统统计结构的要求有多普遍,以及 (ii) FEP 对此类系统行为的信息量有多大。我们发现 FEP 的两个要求——马尔可夫毯子条件(即排除内部和外部状态之间直接耦合的统计边界)和对其螺线管流的严格限制(即驱动系统失衡的趋势)——仅对非常狭窄的参数空间有效。合适的系统需要不存在感知-动作不对称,这对于与环境相互作用的生命系统来说极不寻常。更重要的是,我们观察到,论证中数学上的核心步骤,即把系统的行为与变分推理联系起来,依赖于系统平均状态的动态与这些状态的平均动态之间的隐式等价性。这种等价性即使对于线性系统也不成立,因为它需要有效地与系统的相互作用历史脱钩。这些目标
摘要 — 生命系统既面临环境的复杂性,又面临自由能资源的有限获取。在这些条件下生存需要一个控制系统,该系统能够以特定于环境的方式激活或部署可用的感知和行动资源。在第一部分中,我们介绍了自由能原理 (FEP) 和主动推理作为贝叶斯预测误差最小化的思想,并展示了主动推理系统中控制问题的产生方式。然后,我们回顾了 FEP 的经典和量子公式,前者是后者的经典极限。在第二部分中,我们展示了当系统被描述为执行由 FEP 驱动的主动推理时,它们的控制流系统始终可以表示为张量网络 (TN)。我们展示了如何在量子拓扑神经网络的一般框架内实现 TN 作为控制系统,并讨论了这些结果对在多个尺度上建模生物系统的意义。
等,2022)由自由能原理(FEP)诱导。除了是一项数学和物理上丰富的努力之外,该演讲还强调了 FEP 是一项重要的科学原理。我们将只关注这些含义之一,即 Friston 等人(2023)图 2 中呈现的定性不同系统类别的类型学。我们首先回顾所呈现的相关区别,即马尔可夫毯(MB)的感知和活动状态与内部和外部状态(即感兴趣的系统 A 的状态及其物理环境 B )之间的因果关系。然后,我们考虑当经典 MB 被全息屏幕取代时会发生什么,全息屏幕在 FEP 的量子信息理论公式中充当 MB 的功能(Fields、Friston、Glazebrook & Levin,2022;Fields 等,2023)。经典 MB 与全息屏幕之间最明显的区别在于,MB 的状态是“宇宙”状态空间的元素,A 和 B 是其组成部分,而全息屏幕的状态是该空间的附属状态。我们将展示这种差异在质量上区分了 FEP 的经典和量子公式。特别是,当经典 MB 被全息屏幕取代时,Friston 等人 (2023) 的图 2 中所示的系统类别之间的区别就会消失。不仅所有量子系统都以图 2 中定义的意义活跃,而且所有量子系统都是奇异的,并且可以被视为“推断”自己的行为,我们将继续解释。