交变磁体 MnTe 中的自旋电荷关联产生 THz 晶格和自旋动力学 New Journal of Physics 2020 , 22, 083029 Physical Review B 2021 , 104, 224424 Physical Review Materials 2023 , 7, 054601 Advanced Materials 2024 , 2314076
少原子层薄材料 [1–3] 的合成引发了大规模研究的火花,旨在操控其宏观特性。最近,二维磁有序材料也已生成。[4–7] 这些化合物的长程磁序似乎极易受到晶格畸变的影响,这是因为磁各向异性在稳定二维磁体中的长程有序方面发挥了作用。[8] 通过各种机制超快产生声子已被证明是在基本时间尺度上驱动和控制块体磁体自旋动力学的有力工具。[9–14] 这种途径也适用于范德华二维材料晶体,最近在铁磁 CrI 3 晶体中发现动态自旋晶格耦合就证明了这一点。 [15] 从自旋电子学角度来看,二维反铁磁体与铁磁体相比具有几个基本优势。主要优势在于基态更稳定,磁共振频率在 THz 范围内,比铁磁体高几个数量级。至关重要的是,反铁磁磁子与声子的耦合处于光学声子的能量范围内,这导致了最近有关二维反铁磁材料中杂化磁子-声子准粒子的报道。[16–20] 因此,光驱动的集体晶格模式具有在二维反铁磁体中光学控制长程磁序的潜力,这是基于已证实的可能性,即使光子能量远离其本征频率,也可以完全相干地驱动此类模式[21,22],也基于它们与磁子的强耦合。在此背景下,过渡金属三硫属磷酸盐(MPX3,其中M = Ni、Fe、Mn、... 和X = S、Se)代表了一类有趣的范德华反铁磁体。[23–26] 虽然据报道在独立的 NiPS3 块体单晶中 [27] 可以产生光学磁振子,但这种材料缺乏可扩展性到二维极限。事实上,实验证明,NiPS3 的单原子层在磁排序上与 MnPS3 [28] 和 FePS3 [25] 并无不同。
两年的新冠疫情过后,欧盟将走向何方?欧盟如何应对由此引发的多方面危机?欧洲的民主和法治如何?是否采取了任何措施来扭转我们大陆日益加剧的不平等趋势?我们正在采取哪些措施来应对我们面临的诸多全球挑战,从气候变化到数字化转型?潮流最终会转向有利于欧洲社会民主党吗?保加利亚最近的权力转移是否预示着更深层次和持久的变化?匈牙利联合反对派想要挑战欧尔班的权力还有希望吗?欧洲境外的事件如何影响欧盟?欧盟最终有能力并愿意承担其全球责任吗?我们对 2022 年有何期待?回顾刚刚过去的一年,FEPS 进步年鉴第三版力求履行 FEPS 在该书第一版之际做出的雄心勃勃的承诺,并着手为读者提供对 2021 年发生的政治发展的一些解读,以及对未来一年可能发生的事情的一瞥。我们当然没有水晶球。但通过我们众多权威贡献者的分析,我们旨在为读者提供当前关注的多个问题的答案,或者至少为他们提供一个全新的、不同的、进步的视角来应对欧洲及其他地区正在发生的挑战、发展和变革。FEPS 希望这本书能帮助读者回顾过去,展望未来。
两年的新冠疫情过后,欧盟将走向何方?欧盟如何应对由此引发的多方面危机?欧洲的民主和法治如何?是否采取了任何措施来扭转我们大陆日益加剧的不平等趋势?我们正在采取哪些措施来应对我们面临的诸多全球挑战,从气候变化到数字化转型?潮流最终会转向有利于欧洲社会民主党吗?保加利亚最近的权力转移是否预示着更深层次和持久的变化?匈牙利联合反对派想要挑战欧尔班的权力还有希望吗?欧洲境外的事件如何影响欧盟?欧盟最终有能力并愿意承担其全球责任吗?我们对 2022 年有何期待?回顾刚刚过去的一年,FEPS 进步年鉴第三版力求履行 FEPS 在该书第一版之际做出的雄心勃勃的承诺,并着手为读者提供对 2021 年发生的政治发展的一些解读,以及对未来一年可能发生的事情的一瞥。我们当然没有水晶球。但通过我们众多权威贡献者的分析,我们旨在为读者提供当前关注的多个问题的答案,或者至少为他们提供一个全新的、不同的、进步的视角来应对欧洲及其他地区正在发生的挑战、发展和变革。FEPS 希望这本书能帮助读者回顾过去,展望未来。
ins6tut laue-langevin Ph.d奖学金“磁成功耦合3”是FEPS 3中的Phonon耦合。该项目结合了先进的冷凝物质计算和最先进的中子散射实验,以研究分层的范德华化合物中磁性和晶体晶格振动之间的相互作用。联系人:合作。托马斯·奥尔森(Thomas Olsen)教授,dtu tolsen@fysik.dtu.dk,Andrew Wildes博士,伊利诺斯(Wildes@ill.fr)博士学位,博士提供了一个独特的机会,可以使用两种第一原理理论方法和中子散射技术在两维材料中对磁性进行尖端研究。该职位将为您提供学术界职业的理想起点,您将获得计算固态物理和最新中子散射方法的高级技能。您正式隶属于这两个机构,但将在ILL雇用并在DTU招募。该项目的主题是分层的van der waals化合物FEPS 3中的磁子和声子之间的复杂相互作用。目前,这些类型的化合物对它们可能被分层为一个原子层,类似于石墨烯。feps 3特别有趣,因为它具有本质上的磁性,可深入了解低维度中的基本磁性,并具有在基于石墨烯的技术中应用的潜力。该化合物也具有高度的磁性性,在磁性和晶体结构之间具有强耦合。该项目结合了两个主要机构的资源。理解化合物特性的关键在于晶格晶格振动(称为声子),被称为磁子(称为镁元),尤其是它们之间的相互作用。目前,这种相互作用在凝聚的物理学中对此尚不清楚。在FEPS 3中研究它们将导致对其物理特性的理解,并将作为更好地理解磁晶格耦合的基础。您将通过以第一原理计算建模为指导的非弹性中子散射实验来研究FEPS 3中的镁 - 光子相互作用。在法国短暂的整合期之后,将在项目开始(六个月)的某个时间上花费在DTU上,专注于学习和应用密度功能理论以分析磁通光谱。剩余时间(2。5年)将用于不良表现和分析中子散射实验,这将不受第一原理模拟的持续支持。因此,在整个项目期间,实验与理论之间将存在很强的相互作用。dtu是全球领先的技术大学,以其研究,教育,创新和科学建议的卓越表现。ILL是中子科学技术领先地位的国际研究中心,经营具有异常高的中子通量和约40个尖端仪器的中子来源。您将成为来自欧洲各地的充满活力和凝聚力的学生的一部分,这些学生有定期的社会和发展活动,并在法国阿尔卑斯山脚下的一个国际化城市体验生活。该项目将使您能够建立研究方向并在欧洲建立联系和合作者网络,并且是磁性和中子散射或以后的职业生涯的绝佳跳板。有关更多信息,请联系:协会。托马斯·奥尔森教授(tolsen@fysik.dtu.dk)
几种Ising型磁性范德华(VDW)材料表现出稳定的磁接地状态。尽管进行了这些清晰的实验演示,但仍然缺乏对它们的磁各向异性的完整理论和微观理解。尤其是,识别其一维(1-D)的有效性限制以定量方式仍未进行研究。在这里,我们首次为原型Ising VDW磁铁FEPS 3进行了磁各向异性的完整映射。将扭矩测量值与其磁模型分析和相对论密度的总能量计算相结合,我们成功地构建了磁各向异性的三维(3-D)映射,以磁性扭矩和能量来构建。结果不仅在定量上证实了易于轴垂直于AB平面,而且还揭示了AB,AC和BC平面内的各向异性。我们的方法可以应用于VDW材料中磁性的详细定量研究。关键字:FEPS 3,扭矩测量,磁各向异性能量,Ising型磁性结构
© Prof. Mirko Cinchetti 晶体中过渡金属离子局部 3d 态之间的激发,通常称为 dd 跃迁,在固态物理、材料科学和化学中的各种现象中起着关键作用。这些跃迁对过渡金属氧化物的光学性质、氧化物表面的催化活性、高温超导性和磁行为有重大贡献,促进了自旋交叉跃迁,并将光激发与声子和磁振子等量化现象联系起来。二维 (2D) 反铁磁体中发现的独特效应,例如电子-声子束缚态、亚太赫兹 (sub-THz) 频率磁振子模式和混合声子-磁振子模式,凸显了由 dd 跃迁驱动的复杂现象。在本次演讲中,我将讨论我们最近对 FePS 3 的研究,之所以选择 FePS 3,是因为它有望成为一种可扩展的范德华反铁磁半导体,即使在 2D 极限下也能保持磁序。我们采用了两种互补的实验方法。首先,进行泵浦探测磁光测量,以观察激光驱动的晶格和自旋动力学。与 Fe 2+ 多重态中的 dd 跃迁共振的泵浦诱导了以 3.2 THz 振荡的相干声子模式。值得注意的是,这种模式在低光吸收范围内是可激发的,甚至可以保护单个反铁磁层免受损坏。模式的振幅随温度升高而减小,在系统转变为顺磁相时在尼尔温度下消失,从而说明了它与长程磁序的联系。此外,在外部磁场中,这种 3.2 THz 声子模式与磁振子模式混合,从而能够对所得的声子-磁振子混合模式进行光学激发 [1]。此外,我们利用角分辨光电子能谱 (ARPES) 探测基态的电子结构 [2],并利用时间分辨 ARPES 捕捉 FePS 3 中选定自旋允许和自旋禁忌 dd 跃迁的超快动力学 [3]。磁光实验的见解与 ARPES 的发现相结合,揭示了 FePS 3 中 dd 跃迁背后的复杂准粒子动力学,从而更深入地了解它们在量子材料行为中的作用。
摘要:范德华(VDW)磁体中的强旋晶格耦合显示了创新磁力机械应用的潜力。在这里,超快电子显微镜通过纳米级和皮秒成像揭示了在VDW抗FIRERMAGNET FEPS的薄膜腔中的异质自旋介导的相干声子动力学3。观察到了层间剪切声模式的谐波,其中均匀和奇数谐波表现出独特的纳米动力学。通过声波模拟证实,缺陷在形成甚至谐波中的作用是阐明的。在NéEl温度(T n)上方,层间剪切声谐波被抑制,而平面运动波则主要激发。主要的声学动力学从平面外剪切到跨T n的平面行驶波动,表明磁性特性会影响声子散射途径。空间分辨的结构表征为基于层间剪切模式的声腔提供了有价值的纳米镜见见解,为VDW磁铁的磁性应用开辟了可能性。