摘要:在这项研究中,开发了使用ZnO和还原氧化石墨烯(RGO)复合材料的室温氨气传感器。传感器制造涉及反向偏移和静电喷雾沉积(ESD)技术的创新应用来创建ZnO/RGO传感平台。使用XRD,FT-IR,FESEM,EDS和XP对所得材料的结构和化学特性进行了全面分析,并通过UV-臭氧处理实现了RGO降低。电性能,表明由于紫外线处理而引起的电导率增强,并提高了ZnO -RGO异质结的形成带来的电荷迁移率。暴露于氨气,导致传感器的响应性增加,较长的紫外线治疗持续时间提高了较高的敏感性。此外,测量了响应和恢复时间,10分钟的紫外线处理的传感器显示出最佳的响应能力。绩效评估显示对氨浓度的线性响应性具有高R 2值。与丙酮和CO气体相比,传感器还表现出对氨的特殊选择性,使其成为氨气检测的有前途的候选者。这项研究显示了基于ZnO/RGO的氨气传感器的出色性能和潜在应用,这对气体检测领域有很大的贡献。
缓解温室气体排放,尤其是CO 2,突出了对有效CO 2捕获技术的关键需求。这是由于它们在气候变化中的重要作用及其对全球生态系统和人类福祉的深远影响。活化的碳已经成为CO 2捕获的有前途的候选者。在这项研究中,活化的碳是由在700 - 1100℃范围内在各种温度下碳化的木屑合成的,随后使用CO 2激活。通过SEM,FESEM,XRD,TGA和FTIR技术进行了全面的特征,以评估这些特性。结果表明,在1000℃下的碳化产生了带有高级和微孔结构的活化碳,其表面积,孔体积和孔径分别为1651.34 m 2 /g,0.69 cm 3 /g,分别为0.69 cm 3 /g和<1.76 nm。值得注意的是,这种活化的碳在25℃和1 bar时表现出有希望的CO 2摄取9.2 mmol/g。此外,超过10个周期的显着可回收性证明了其实用CO 2捕获应用的潜力。此外,合成的活性碳在N 2(85/15 V/V)上表现出高选择性的高选择性,在1 bar和25°C下达到40.2,这些发现表明了AS-AREG IACKERACTAICTAICTACTIED CARBON作为所需的候选候选和选择性CO 2捕获的可行性,以促进CO的努力,从而促进了Emigation co的努力。
抽象的硅胶橡胶(SR)化合物准备在高温下施用O形圈。硅烷表面修饰的Fe 2 O 3和未修饰的Fe 2 O 3添加到SR化合物中,并通过对FESEM(现场发射扫描电子显微镜)(用于形态学)和TGA和TGA的分析来评估化合物,以及在不同温度,热敏度,硬度,硬度,硬度,硬度,压缩和压缩集合的热导率的测试。此外,在一家石化公司的7 bar压力和温度为180°C的压力下,在一家石化公司的在线气相色谱(GC)中制备了O形圈,并在一个在线气相色谱(GC)中进行了测试。获得的结果表明,SR的热导率,衰老电阻,热稳定性和机械性能下降:表面修饰的Fe 2 O 3填充SR,未修饰的Fe 2 O 3填充SR和SR,而没有Fe 2 O 3。过度使用Fe 2 O 3降低了机械性能和硬化性的加工性。随着温度升高,SR填充的SR的热导率填充有不同体积的体积百分比和未修饰的FE2O3。使用表面修饰的Fe 2 O 3提高了导热率并提高了衰老耐药性,最终增强了热电阻。这对于产生对高温具有抗性的O形圈特别有益。现场测试结果证实了O形圈与高温条件兼容。此外,在测试后,O形圈表现出低体积肿胀和光滑的表面,没有任何裂缝,水泡或不平衡。
化学浴沉积(CBD)用于在玻璃基板上生长ZnO纳米棒。种植的Zno纳米棒被浸入含铜三水合物中[Cu(no 3)2 .3 H 2 O]在90℃的溶液30分钟,然后在400°C下在400℃退火1 h,以将Cu 2 +离子转换为CU 2 +离子以Cuo Nanoparticles转换为Zno/coopompompompompots,并形成Zno/Cuopompomps shiocompompssip。从田间发射扫描电子显微镜(FESEM)获得的图像表明,ZnO结构由Cuo纳米颗粒中涂层的纳米棒组成。ZnO NRS和ZnO/CuO纳米复合材料的光吸收均被强烈边缘,能量间隙分别为3.26和3.21 eV。在不同的pH条件下,在室温下研究了制成的ZnO NRS和ZnO/CuO纳米复合材料薄膜针对尖脂素染料的光降解速率。通过增加暴露于溶液的光和/或pH的时间来增加染料的光降解速率。随着pH值从4增加到4,在330分钟后,pH值从4增加到12,在可见光照射下的光降解速率范围从36%到100%,pH值从4增加到4,pH值为12,pH值为12,pH值为12,pH值减少到78%。此外,还进行了ZnO/CuO纳米复合材料的acriflavin Degra dation的反应性物种的捕获实验
摘要 焊料的润湿性对于实现电子元件和印刷电路板 (PCB) 之间的良好可焊性非常重要。锡 (Sn) 镀层被广泛用于促进焊料在基板上的润湿性。然而,必须考虑足够的锡镀层厚度才能获得良好的润湿性和可焊性。因此,本研究调查了电子引线连接器的锡镀层厚度及其对润湿性和电连接的影响。在电子引线连接器表面应用了两种类型的锡镀层厚度,~3 μm 和 5 μm。研究发现,~3 μm 的薄锡镀层厚度会导致电连接失败,并且焊点润湿性和可焊性不足。5 μm 的较厚锡镀层厚度表现出更好的润湿性和可焊性。此外,电连接也通过了,这意味着较厚的锡镀层厚度提供了良好的焊点建立,从而带来了良好的电连接。还观察到,较厚的锡镀层厚度实现了更好的焊料润湿性。场发射扫描电子显微镜 (FESEM) 的结果表明,对于较薄的锡镀层厚度 (~3 μm),引线连接器表面的金属间化合物 (IMC) 层生长被视为异常,其中 IMC 层被消耗并渗透到锡涂层的表面。这导致薄锡镀层与焊料的可焊性较差,无法形成焊点。本研究的结果有助于更好地理解考虑足够的锡镀层厚度的重要性,以避免锡镀层处的 IMC 消耗,以及更好的润湿性、可焊性和焊点质量,这对于表面贴装技术 (SMT) 尤其适用于电子引线连接器应用。
正在进行的研究涉及合成聚合物材料中的纳米复合材料,并研究其线性,非线性,结构和形式的光学特性,用于在非线性光学领域的应用。在聚合物材料中添加纳米复合材料可以增强和改善许多特性,从而适合广泛的应用。在非线性光学元件(NLO)及其各种应用的领域,添加纳米复合材料制造的利用主要是由于其显着的非线性响应和广泛的光谱透明度。使用化学方法合成了三种纳米复合材料,即Ag 2 Se+PVA,AG 2 SE+PMMA和AG 2 SE+PEO。使用XRD,FESEM,EDX,FTIR,RSS和PL技术进行这些化合物的表征。使用添加不同的聚合物,使用不同浓度的所有产生样品的线性光学特性来研究所有产生的样品的线性光学特性。发现表明在相同波长下浓度增加和更高的吸光度之间存在正相关。此外,与前面的两种化合物相比,AG 2 SE+PVA化合物的吸收更大。量化了所有生成的样品的荧光,发现结果表明浓度和荧光之间存在反比关系,从而增加浓度导致荧光下降。在两种情况下使用Z-Scan技术的非线性计算:开放孔径和闭合光圈。这是为了确定非线性折射率(N2)和非线性吸收系数(β)的值。Ag 2 SE+PVA化合物表现出优异的非线性行为。使用固态泵二极管激光器进行测试,波长为405 nm,功率输出为2.94 mW。
物理系,Vel Tech Rangarajan Sagunthala R&d科学技术研究所博士,Vel Nagar,Vel Nagar,Vel Nagar,Avadi,Avadi,Avadi,Chennai-600 062,泰米尔纳德邦,印度泰米尔纳德邦B,纳格尔斯(Nagercoil基础科学基础科学,VELS科学技术研究所和高级研究,钦奈Pallavaram 600 117 D PG&Research Togience of Physics,Paavendhar艺术与科学学院,M.V。南,塞勒姆(Thalaivasal),塞勒姆(Salem),泰米尔纳德邦(Tamil Nadu)636 121,印度e化学系,国王沙特大学(P.O. Box)。2455,Riyadh 11451,沙特阿拉伯F药学学院,Kangwon国立大学,Chuncheon,Gangwo-24341,大韩民国LA 2 Cuo 4 Perovskite纳米颗粒掺杂的铝含量由铝掺杂,通过微波燃料燃烧技术合成。 分别使用各种技术,包括XRD,EDX,VSM,DRS-UV,FT-IR和FESEM进行了有关结构,磁性,功能和形态学特性的全面研究。 尽管如此,Al 3+内容中的增强(X = 0-0.25)引起了一个值得注意的相位移位,从正骨到立方配置。 平均晶体尺寸从54到41 nm。 在大约687和434 cm -1处的不同ft-ir频带与矫正原状LA 2 CUO 4相固有的LA-O和Cu-O伸展模式错综复杂地联系在一起。 离子在表面中的运动2455,Riyadh 11451,沙特阿拉伯F药学学院,Kangwon国立大学,Chuncheon,Gangwo-24341,大韩民国LA 2 Cuo 4 Perovskite纳米颗粒掺杂的铝含量由铝掺杂,通过微波燃料燃烧技术合成。分别使用各种技术,包括XRD,EDX,VSM,DRS-UV,FT-IR和FESEM进行了有关结构,磁性,功能和形态学特性的全面研究。尽管如此,Al 3+内容中的增强(X = 0-0.25)引起了一个值得注意的相位移位,从正骨到立方配置。平均晶体尺寸从54到41 nm。在大约687和434 cm -1处的不同ft-ir频带与矫正原状LA 2 CUO 4相固有的LA-O和Cu-O伸展模式错综复杂地联系在一起。离子在表面通过Kubelka -Munk(K -M)方法确定的能量差距,与质量约束现象归因于Al 3+含量(1.67–1.72 eV)的高度伴随。在LA 2-X Al X CuO 4(X = 0至0.25)系统中,很明显,纳米级结晶晶粒的起源散布在谷物合并的孔中。滞后曲线的分析揭示了在环境温度下软铁磁行为的出现。(2023年11月13日收到; 2024年3月7日接受)关键字:LA 2 CUO 4纳米木制,钙钛矿,孔隙墙谷物,带隙,软铁磁1。引言纳米材料的特殊生理化学特征是其小尺寸的结果。因此,它们在许多应用中使用,例如光降解,催化等[1-4]。la 2 CuO 4是一种类似钙钛矿的物质,它因其在能量和环境领域的广泛潜在用途而引起人们的注意,包括陶瓷燃料电池,用于氧化和还原反应的电极材料,催化反应,催化,气体传感器,超导管,超导管分解和超导管器[5,6]。基于灯笼(LA 3+)的材料表现出更大的碳氧化活性。O 2-离子的晶格迁移率的增加可能与钙钛矿作为氧化催化剂的功能有关。
在光电探测器技术中,瓶颈被确定为能够检测低强度电磁辐射的新型材料的挑战,并且与综合电路(IC)制造也兼容。在各种金属氧化物半导体中,基于过渡金属氧化物(TMOS)材料更适合于由于其宽带,热稳定性和化学稳定性而导致的紫外线(UV)光电探测器应用。尤其是,三氧化钨(WO 3)已被证明是光子应用中最合适的候选者,包括电动型,光色素和气体传感器设备。在此,以增强性能增强的基于WO 3的光电探测器测试设备的开发已集中。WO 3薄膜以不同的氧局压(P O 2)的形式沉积在SIO 2 /Si底物上,并使用射频(RF)Magnetron溅射技术沉积在溅射压力条件下。在论文的第一部分中,溅射技术(如P o 2)中最重要的生长参数和用于沉积WO 3薄膜的溅射压力是根据光电探测器测试设备的性能进行了优化的。使用各种表征技术(包括X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),X射线光电学光谱(XPS),Ra-Many和Atomic Force Microscopy(AFM),对结构,形态和化学状态进行了分析。Ti/Wo 3/Ti测试磁发炉在382 nm的紫外线照明下显示出0.166 a/w的较高响应性,在非常低的功率密度为0.66 mW/cm 2的情况下。生长的WO 3薄膜用于使用钛电极(TI)电极的Fabiale Metal-Metal-Senemenductor-Metal(MSM)平面结构化光电探测器测试设备,并测量了光电探测器参数,例如光电构成,响应率,响应性,检测性,检测率和外部量子效率(EQE)。为了实现从紫外线到可见区域的多光谱吸收,在论文的第二部分中介绍了新的基于WO 3的异质结构。最初,溅射基于石墨烯的溅射(GR/WO 3)异质结构被制造以研究紫外可见的光电探测器性能。GR/WO 3异质结构在512 nm的可见照明下达到了0.085 A/W的最大响应性。然而,由于石墨烯的某些局限性,WS 2 /WO 3异质结构是通过化学蒸气沉积(CVD)技术将WS 2纳米结构在WO 3层上种植到WO 3层的方法。在这里,使用互插的银(AG)电极制造Ag /WS 2 /WO 3 /Ag光电探测器测试设备。由于WS 2的纳米结构和外部电子迁移率的形成,在紫外线和可见的照明下分别实现了2.94 A/W和2.01 A/W的高响应性。获得的结果测试是WS 2 /WO 3异质结构是宽带紫外可见光电探测器的有前途的候选者,并且可以使用其他TMO和TMD进行相同的策略,以实现光电式Decessices的高性能光电探测器。