本研究中的 TFET 为浮体 SOI 器件,因此应首先评估执行电荷泵浦测量的可行性 [19]。当用具有恒定基极电平和幅度的方波脉冲栅极时,漏极和源极保持在相同的电位,该电位扫过 0 至 1.5 V 的适当范围,以激活 Si/栅极电介质界面处的生成-复合过程。发现在 P+ 源极接触处测得的电流与栅极脉冲的频率成正比,证明了电荷泵浦装置的正确性 [20],[21]。因此,即使我们的基于 SOI 的 TFET 中没有体接触,由于源极和漏极具有相反的掺杂类型,我们仍然可以执行电荷泵浦测量来评估 N it 。对于下面所示的电荷泵结果,栅极由 500 kHz 方波驱动,其边沿时间为 100 ns,幅度为 1.5 V,基准电平为 0 V,脉冲占空比为 50%。
虽然DVD,平面屏幕,汽车设备和3G手机在2002 - 2007年期间刺激了市场恢复,但2008年的“次级银行崩溃”再次减慢了电子经济的速度。在2010-2015时期,与现代社会有关的新市场,例如可再生能源,4-5G智能手机,物联网(IoT)和高分辨率电视,导致了可持续增长。后者在2019/2020年得到了确认,可能是通过电子设备维持相对稳定的全球经济需求的不断增强的,这是由COVID大流行触发的卫生危机。大流行还改变了消费者的行为,并从2020年中期开始促进了个人计算机,智能手机,娱乐设备的销售,并导致了2021年全球芯片短缺,特别是在汽车和数据中心行业。分析师说,全球芯片销售在2021年应达到8%(估计估计是2020年增长的4%)。
通过减轻人类驾驶员安全操作车辆的责任,自动驾驶系统(ADSS)(通俗地称为自动驾驶汽车)可以释放时间,并且还可以减少道路事故的数量。矛盾的是,即使安全是ADS的主要期望之一,它也是主要挑战之一,可以说,我们尚未看到这种系统的广泛部署的关键原因之一。与前几代汽车系统相反,共同的开发和安全保证实践不再是适应广告固有的系统复杂性和操作不确定性的增加。的确,在部署之前表现出安全性的具体模型和手段仍然难以捉摸。为此,本论文着重于对ADS的安全保证的有效策略,并从三个角度探讨了这一点。首先,已经对技术状态进行了全面审查,以识别和构建可用的方法,以提供(预测)广告安全性的证据,并确定需要进一步研究的差距和方向。其次,已经探索了确保验证和验证(V&V)的完整性以及广告的安全要求的任务。对操作设计域(ODD)的适当定义,形式化和管理提供了一种方法,以确保广告的规范,测试和操作之间的对齐方式 - 这是缩小V&V完整性差距的一种方法。QRN通过考虑损失事件的频率来促进这种详尽的功能(例如,此外,为了满足安全要求的呼气性,本文提出了使用定量风险规范(QRN)来引起定量的车辆级要求。事故),而不是需要对与广告有关的所有可能危害进行枚举。第三,本文扩展了预防安全性(PC)的概念,提出了一种方法,以连接QRN的定量安全要求和广告的运行时确定要求。这是通过增强广告的情况意识(SAW)来理解其自身避免不同损失事件的能力来启用的。使用此增强的SAW模型,并随后考虑损失事件概率的不确定性,即使在可用数据有限的情况下,也可以评估QRN。因此,提出的方法可以确保广告确实只采取已知的决定来填写QRN。共同介绍了本文中提出的工作铺平了一种方法,以弥合广告的定量安全要求和运行时决策,以及概述了ADSS的有效安全保证的可能策略 - 借助Appended Paper的贡献。仍然有几个开放的问题可以理解这种方法的含义,但是本文展示的工作为未来的工作奠定了坚实的基础。
摘要 - 本文重点介绍了在短路条件下SIC MOSFET的鲁棒性水平的提高。在这项研究中,提出了两种允许在短电路操作下在平面电源MOSFET设备中确保安全的“失败”(FTO)模式的方法。这些方法基于栅极源电压的直接去极化及其根据FTO和经典不安全热失控之间的临界消散功率(W/mm²)的计算进行估计。他们允许确定门源电压的最大值,以在接近名义值的排水源电压下保留FTO模式。引入了FTO和“ Fafto-Short”(FTS)之间功率密度的边界。对竞争中的两种故障模式进行了完整的实验,该实验可能出现在1.2 kV SIC MOSFET的短路测试(SC)测试中。最后,研究了栅极源电压去极化对国家电阻(R DS(ON))的惩罚,以评估技术效率。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
此安全元素更新已与该市的当地缓解危险计划(LHMP)更新同时准备。当地缓解危险计划确定了当地的灾害危害,评估这些危害的可能性并估算潜在的成本,并确定了减轻灾害损失的措施。2000年的《灾难缓解法》要求LHMP修订每五年一次由联邦紧急事务管理局(FEMA)审查和批准。更新一次的LHMP,每五年修订一次,作为城市的缓解计划,采用行动和计划,指导该市如何有效地为自然和建筑环境中的紧急情况和其他危害做出有效准备,响应和恢复。最后一个LHMP是在2016年准备的,目前正在进行LHMP的更新。安全元素与即将到来的LHMP更新中确定的降低风险和应急响应策略保持一致。为了确保该市根据AB 2140的合格公共援助项目的额外资金,该市通过参考LHMP和任何未来更新的LHMP合并。LHMP在线发布在城市紧急网站上。必要时,每当FEMA批准更新后的LHMP时,纽约市将修改安全元素以纳入LHMP。安全元素提供了上下文框架,并概述了城市的危害缓解策略和应急响应操作。,只要安全元素是指导文件而不是操作文件,就无意作为紧急操作计划。
为了最大程度地减少或消除沟槽,最好有利于蚀刻过程的化学成分。因此,我们决定继续使用ICP-RIE进行O 2等离子体蚀刻,这是因为在表面形态和各向异性蚀刻方面具有令人鼓舞的结果,因此我们已经研究了血浆参数的影响ICP和偏置功率,尤其是使用两种类型的口罩:铝和硅二氧化物(Sio-dioxide)(Sio 2)。3- O 2在Sentech Si500-Drie设备上进行了用铝面膜钻石蚀刻的等离子体蚀刻。测试样品是(100)方向的单晶CVD钻石底物和元素六的3 x 3 mm 2尺寸。第一步涉及溶剂和酸的化学清洁,以去除可能影响蚀刻和产生粗糙度的污染物。然后将钻石底物涂在光线器上,并用激光光刻降低,以定义掩模图案。然后通过热蒸发沉积700 nm厚的铝面膜。金属薄膜,例如铝,由于其在钻石上的良好粘附性[24]及其良好的蚀刻选择性[25],因此将其用作单晶钻石蚀刻的硬面膜材料。此外,由于血浆中的寿命不足,尤其是在氧气中,因此与光致剂相比,金属面膜仍然是更好的选择。3.1 o 2等离子蚀刻的p icp = 500W和p偏见= 5W我们研究的第一个蚀刻条件是:p icp = 500 w,p sial = 5 w,压力= 5吨,气体流量= 25 sccm,温度= 18°C。每个蚀刻步骤都限制为30
anaïsCassou *1,Quang Chuc Nguyen 2,Patrick Tounsi 1,Jean-Pierre Fradin 3,Marc Budinger 4,Ion Hazyuk 4 1 CNR,Laas,Laas,7 Avenue du du Colonel Roche Roche,Univ。De Toulouse, INSA, LAAS, F-31400 Toulouse, France 2 IRT Saint-Exupéry, 3 Rue Tarfaya - CS34436, 31400 Toulouse cedex 4, France 3 ICAM, site de Toulouse, 75 avenue de Grande Bretagne, 31076 Toulouse Cedex 3, France 4 Université de Toulouse, ICA (INSA, UPS,地雷Albi,Isae),135 Av。de rangueil,31077法国图卢兹 *电子邮件:anais.cassou@laas.fr本文在优化电源转换系统时涉及紧凑型瞬态热模型的兴趣。这些模型必须考虑基于SIC MOSFET的功率模块的不同芯片之间的热耦合效应。在模拟工具(例如ModelICA)中很容易实现开发的模型。我们将表明,对于在低占空比工作周期或快速变化的功率需求的应用程序,瞬态模型可以通过减轻系统来改善全球最佳设计。这种方法还确保连接温度不超过其极限值。
摘要 - 本文重点介绍了在短路条件下SIC MOSFET的鲁棒性水平的提高。在这项研究中,提出了两种允许在短电路操作下在平面电源MOSFET设备中确保安全的“失败”(FTO)模式的方法。这些方法基于栅极源电压的直接去极化及其根据FTO和经典不安全热失控之间的临界消散功率(W/mm²)的计算进行估计。他们允许确定门源电压的最大值,以在接近名义值的排水源电压下保留FTO模式。引入了FTO和“ Fafto-Short”(FTS)之间功率密度的边界。对竞争中的两种故障模式进行了完整的实验,该实验可能出现在1.2 kV SIC MOSFET的短路测试(SC)测试中。最后,研究了栅极源电压去极化对国家电阻(R DS(ON))的惩罚,以评估技术效率。
IPCS-国际化学安全卡(ICSC),网站:http://www.ilo.org/dyn/dyn/scc/showcard.home hsdb-危险物质数据库,网站:https://ttpsnet.nlm.nih.gov/nih.gov/newtoxnet/nodect on intocation in intocation in intocation in intocation in intocation in intocation in intocation intocation in intocation in cancely of Carly -HSDMCMIAT cance: http://www.iarc.fr/ eChemPortal - The Global Portal to Information on Chemical Substances by OECD, website: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en CAMEO Chemicals, website: http://cameochemicals.noaa.gov/search/simple ChemidPlus,网站:http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp erg-美国交通部的紧急响应指南,网站:http://wwwwwww.phmsa.phmsa.dot.gov/hazmat/hazmat/library/library/library/library/library/library/library gestis-dermane gestis-hazard-hazard-hazardase neblite neblite nepental actasese: http://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index-2.jsp echa-欧洲化学局 - 网站:https://echa.europa.eu/