在半个多世纪的时间里,微电子学是由摩尔定律驱动的,摩尔的定律预测每18个月的整合密度将增加一倍,从而指数增长,这对于经济和绩效原因非常有益。根据IRDS [1]的规模,尽管摩尔法律已经结束,但在未来十年中,尽管摩尔的法律已经结束。然而,必须克服许多挑战,其中许多与材料缩放达到原子维度的事实有关,尤其是在垂直区域中。例如,硅的迁移率开始恶化在5 nm以下[2],这对于其他3D材料可以预期。因此,IRDS将分层的2D半导体列为2028年以后超级FET和内存设备的有前途的选择。符合这些要求,有几个组报告了石墨烯[3],硅[4],黑磷[5]和过渡金属二北卡尔科氏菌[6,7]表现出极好的晶体管特征。研究工作主要集中在寻找具有最高迁移率和体面的带镜头的最佳渠道材料上。此外,已经进行了MOS 2 FET的电路集成尝试[8]。然而,2D FET还需要合适的绝缘体来将控制门与通道分开,该通道应该是可扩展的,并且理想地与2D半导体一起搭配,就像SIO 2一样,与Sio 2一起使用。缺乏这些绝缘子使得完全利用2D电子设备的预先定价性能潜力是复杂的,尽管
EPC9186 演示板是一款三相 BLDC 电机驱动逆变器板,采用 EPC2302 eGaN FET,额定电压为 100 V,R DS(on_max) 为 1.8 mΩ。EPC9186 每个开关位置使用四个并联的 GaN FET,可提供高达 212 A pk (150 A RMS) 的最大输出电流。该板支持电机驱动应用中高达 100 kHz 的 PWM 开关频率。EPC9186 包含支持完整电机驱动逆变器所需的所有关键功能电路,包括栅极驱动器、稳压辅助内务电源、电压和温度感应、精确电流感应和保护功能。主要部分如图 1 所示。EPC9186 可与各种兼容控制器匹配,由各种制造商支持,利用现有资源实现快速开发。
II。 课程描述:本课程介绍了原子结构,能带,半导体类型的基本原理和概念,以及如何形成递延类型的电子设备。 第一个要引入的电子设备是二极管,这是最简单的半导体设备,但在电子系统(例如电压整流器,夹具,夹具,夹具,电压乘数电路等)中起着非常重要的作用。 此外,我们将详细研究从结构,操作,参数和特征开始的两种主要类型的晶体管(BJT和FET),II。课程描述:本课程介绍了原子结构,能带,半导体类型的基本原理和概念,以及如何形成递延类型的电子设备。第一个要引入的电子设备是二极管,这是最简单的半导体设备,但在电子系统(例如电压整流器,夹具,夹具,夹具,电压乘数电路等)中起着非常重要的作用。此外,我们将详细研究从结构,操作,参数和特征开始的两种主要类型的晶体管(BJT和FET),
TPS2583X-Q1是一个高度集成的USB Type-C和BC1.2充电端口控制器,其中包括同步DC/DC转换器。它还支持dp_in/dm_in/cc1/cc2短暂的保护保护。在汽车的组装,制造和维护期间,存在一个常见的问题,其中USB端口随机短短汽车电池,造成芯片损坏,或者USB闪电端口在每日施用过程中意外撞击了烟气打火机,这也会造成芯片损坏。TPS25830,TPS25831-Q1和TPS25840-Q1提供DP_IN/DM_IN/CC1/CC2短途防护,并支持18-V的最大保护电压,从而避免了CHIP损坏。以下所有测试均基于TPS25830Q1EVM-040。电源以及外部30-MF电解电容器用于模拟汽车电池。测试输入电压为14.5 V,R3外部。外部FET的建议值为10R/0603。没有外部R3的外部FET的建议值为100R/0805。
Arunabh Singh Suraj Kumar Singh 电子和通信系,电子和通信系,FET,MRIIRS,法里达巴德,121003,哈里亚纳邦,印度 FET,MRIIRS,法里达巴德,121003,哈里亚纳邦,印度 摘要 - 量子计算是一种可能彻底改变计算的有利技术。它不同于传统计算,它需要计算算法和与量子力学原理相对应的实现方法。现有计算机处理器系统的时钟频率可能在未来十年内达到约 40 GHz。到那时,一个原子可能代表一个比特,但在这种条件下的电子无法用经典物理学来描述,因此,新的计算模型将变得绝对必要。量子计算的前景可能有潜力解决经典计算面临的问题。关键词:量子计算、量子比特、布洛赫球、量子寄存器、线性光学、捕获离子、光纤、激光脉冲整形等。
基于源的无异质结纳米线 TFET 在低功耗应用中的设计与仿真”,IEEE 社会创新技术与管理跨学科方法国际会议 (IATMSI),2024 年 3 月 14 日至 16 日,瓜廖尔,DOI:10.1109/IATMSI60426.2024.10502440 2. Aadil Anam;S. Intekhab Amin;Dinesh Prasad “用于生物传感应用的基于源的无异质结纳米线隧道 FET:设计与分析”,IEEE 社会创新技术与管理跨学科方法国际会议 (IATMSI),2024 年 3 月 14 日至 16 日,瓜廖尔,DOI:10.1109/IATMSI60426.2024.10502440 2. Aadil Anam;S. Intekhab Amin;Dinesh Prasad “用于生物传感应用的基于 InSb 源的无异质结纳米线隧道 FET:设计与分析”,IEEE 社会创新技术与管理跨学科方法国际会议
AI人工智能ASIC应用特定的集成电路AQNMOL先进的量子纳米材料和光电实验室B2B业务B2C业务向消费者CS COS复合半导体CSA CSA复合半导体应用CPU CPU中央处理单位CMOS辅助金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化型。dbt商业和贸易系科学系,创新和技术部DRAM动态随机记忆EDA电子设计自动化EIS企业投资计划ETRI电子和电信研究所欧洲欧盟欧盟FET FET国内生产总值HBM高带宽内存HBT异质结双极晶体管IC集成电路ICT信息和通信技术IIT工业Internet
通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度进一步缩小,从而缩小了接触多晶硅间距 (CPP)。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电性能的新结构(例如插入氧化物鳍式场效应晶体管 (iFinFET)、Gate-All-Around FET、Nanosheet FET)。