• 半导体材料的特性 • 半导体二极管 • 双极晶体管(npn 和 pnp) • 双极晶体管的特性 • Ebers-Moll 和 Gummel-Poon 模型 • 双极晶体管的 Spice 参数 • 用作开关的晶体管、有源区和反向区、饱和度 • 用作小信号放大器的晶体管、小信号参数和工作点的计算 • 频率响应的计算 • 米勒定理 • 谐波和失真的评估 • 电流源和电流镜 • JFET • n-MOS 和 p-MOS FET • FET 工作点的计算 • FET 作为小信号放大器 • 集成基础 • CMOS 反相器 • 集成电路中的寄生效应
在半个多世纪的时间里,微电子学是由摩尔定律驱动的,摩尔的定律预测每18个月的整合密度将增加一倍,从而指数增长,这对于经济和绩效原因非常有益。根据IRDS [1]的规模,尽管摩尔法律已经结束,但在未来十年中,尽管摩尔的法律已经结束。然而,必须克服许多挑战,其中许多与材料缩放达到原子维度的事实有关,尤其是在垂直区域中。例如,硅的迁移率开始恶化在5 nm以下[2],这对于其他3D材料可以预期。因此,IRDS将分层的2D半导体列为2028年以后超级FET和内存设备的有前途的选择。符合这些要求,有几个组报告了石墨烯[3],硅[4],黑磷[5]和过渡金属二北卡尔科氏菌[6,7]表现出极好的晶体管特征。研究工作主要集中在寻找具有最高迁移率和体面的带镜头的最佳渠道材料上。此外,已经进行了MOS 2 FET的电路集成尝试[8]。然而,2D FET还需要合适的绝缘体来将控制门与通道分开,该通道应该是可扩展的,并且理想地与2D半导体一起搭配,就像SIO 2一样,与Sio 2一起使用。缺乏这些绝缘子使得完全利用2D电子设备的预先定价性能潜力是复杂的,尽管
单层 2D FET 超越硅 利用超薄 2D 材料(如 MoS2)实现更短的栅极长度(参考:英特尔 2D 集成 IEDM 2023)
二维(2D)结构由具有高载体迁移率的原子薄材料组成的二维(2D)结构已被研究为未来晶体管1-4的候选。然而,由于合适的高质量介电的不可用,尽管具有优越的物理和电气特性,但2D现场效应晶体管(FET)仍无法获得全部理论潜力和优势。在这里,我们证明了原子上薄的单晶Al 2 O 3(C-al 2 O 3)作为2D FET中的高质量顶栅介电。通过使用插入式氧化技术,在室温下,在单晶Al表面形成了稳定,化学计量和原子较薄的C-Al 2 O 3层,厚度为1.25 nm。由于有利的晶体结构和明确定义的接口,栅极泄漏电流,界面状态密度和C-AL 2 O 3的介电强度3符合国际路线图3,5,7的国际路线图3,5,7。通过由源,排水,电介质材料和门组成的一步转移过程,我们实现了顶部的MOS 2 FET,其特征是以61 mV的陡峭亚阈值摇摆为61 mV-1-1-1,高/OFF电流比为10 8,并且非常小的滞后率为10 mV。这种技术和材料证明了产生适合整合到完全可扩展的晚期2D FET的高质量单晶氧化物的可能性,包括负电容晶体管和自旋晶体管。
过去 60 年,集成电路中晶体管数量的迅猛增长推动了电子技术的进步。因此,现代电子芯片包含数十亿个场效应晶体管 (FET),而最先进的硅 FET 由薄至 7 纳米(相当于 13 个原子层 1 )的结构构成。然而,像硅这样的三维材料在进一步减小厚度时,迁移率会急剧下降。此外,非晶态和粗糙的沟道/氧化物界面(也存在于先进的高 k 技术中,如二氧化铪,HfO 2;k,介电常数)的影响变得越来越有害。因此,仅仅依靠标准硅技术进一步缩小现代电子设备的体积正在慢慢停滞 2 。继续缩小设备体积最有希望的解决方案之一是使用具有原子级厚度的二维 (2D) 沟道 3、4 的 FET,它们本质上提供亚纳米级的沟道厚度。然而,2D 技术缺乏能像二氧化硅 (SiO 2 ) 与硅一样有效的绝缘体。理想情况下,这种绝缘体必须能够扩展到等效氧化物厚度 (EOT;与某种替代绝缘体产生相同电容的 SiO 2 厚度) 的单个纳米以下,并且质量足够高以保持低漏电流。此外,绝缘体应该与通道具有明确的界面,绝缘体缺陷数量少,并且介电稳定性高。Hailin Peng 和同事在《自然电子学》上撰文,表明高迁移率 2D 半导体 Bi 2 O 2 Se 可以共形氧化为原子级薄的天然氧化物亚硒酸铋 (Bi 2 SeO 5 ),随后可用作 FET 5 中的栅极绝缘体。目前,六方氮化硼 (hBN) 被广泛认为是二维电子器件最有前途的绝缘体,因为它是结晶的,并且具有干净的范德华界面 6 。然而,hBN 不太可能满足低漏电要求
摘要:由对石墨烯的开创性研究触发,已经研究了二维分层材料(2DLM)的家族已有十多年了,并且已经证明了具有吸引力的功能。然而,仍然存在挑战,抑制了高质量的增长和电路水平的整合,而先前研究的结果仍然远远不符合工业标准。在这里,我们通过利用机器学习(ML)算法来评估影响MOS 2顶部门控型晶体管(FET)的电气特性的关键过程参数来克服这些挑战。然后通过ML与网格搜索相结合来指导晶圆尺度的制造过程,以使设备性能(包括移动性,阈值电压和亚阈值秋千)合作。针对MOS 2 FET实施了62级香料建模,并进一步用于构建功能性数字,模拟和光电检测电路。最后,我们介绍了晶圆尺度的测试FET阵列,以及使用行业标准设计流和流程的4位全加法器。总的来说,这些结果在实验中验证了ML辅助制造优化对超硅电子材料的应用潜力。
使用场效应晶体管 (FET) 来探索具有传输测量的原子级薄磁性半导体是困难的,因为大多数 2D 磁性半导体的极窄带会导致载流子局域化,从而阻止晶体管工作。本文表明,CrPS 4 的剥离层(一种带宽接近 1 eV 的 2D 层状反铁磁半导体)可以实现在低温下正常工作的 FET。使用这些设备,可以测量电导率作为温度和磁场的函数,以确定完整的磁相图,其中包括自旋翻转和自旋翻转相。确定了磁导率,它在很大程度上取决于栅极电压。在电子传导阈值附近达到高达 5000% 的值。尽管研究中使用的 CrPS 4 多层厚度相对较大,但栅极电压还可以调整磁态。结果表明,需要采用具有足够大带宽的二维磁性半导体来实现正常运行的晶体管,并确定一种候选材料来实现完全栅极可调的半金属导体。
理解和优化光活性二维 (2D) 范德华固体的特性对于开发光电子应用至关重要。在这里,我们详细研究了 InSe 基场效应晶体管 (FET) 的层相关光电导行为。使用 λ = 658 nm (1.88 eV) 的连续激光源在 22.8 nW < P < 1.29 μW 的很宽照明功率范围内研究了具有五种不同通道厚度(t,20 nm < t < 100 nm)的 InSe 基 FET。所研究的所有器件都显示出光电门控的特征,然而,我们的研究表明光响应度在很大程度上取决于导电通道的厚度。场效应迁移率 (μ FE ) 值(作为通道厚度 t 的函数)和光响应度 (R) 之间的相关性表明,通常 R 随着 μ FE 的增加(t 降低)而增加,反之亦然。当 t = 20 nm 和 t = 100 nm 时,器件的最大响应度分别为 ~ 7.84 A/W 和 ~ 0.59 A/W。在施加栅极电压的情况下,这些值可能会大幅增加。本文介绍的基于结构-性能相关性的研究表明,可以调整 InSe 基光场效应晶体管的光学性能,以用于与太阳能电池中的光电探测器和/或有源层相关的各种应用。