摘要 首次展示了通过剥离技术在 SiO 2 / Si 衬底上制备的纳米膜三栅极 β -氧化镓 ( β -Ga 2 O 3 ) 场效应晶体管 ( FET )。通过采用电子束光刻技术,可以定义最小尺寸特征,覆盖通道宽度为 50 纳米。为了在 β -Ga 2 O 3 和栅极电介质之间获得高质量的界面,利用原子层沉积的 15 纳米厚的氧化铝 ( Al 2 O 3 ) 和三甲基铝 ( TMA ) 自清洁表面处理。制备的器件表现出极低的亚阈值斜率 ( SS ),为 61 mV dec − 1 ,高的漏极电流 ( I DS ) 开/关比为 1.5 × 10 9 ,以及可忽略不计的传输特性滞后。我们还通过实验证明了这些器件的稳健性,在高达 400°C 的温度下测量了电流-电压(I-V)特性。
TPS7H4001-SP 和 TPS7H4003-SEP 是集成 FET 的高电流 (18 A) 降压转换器,其主要特性是能够并联最多 4 个相位相差 90 度的器件,而无需外部时钟,旨在满足核心轨道上对更高电流日益增长的需求。0.6 V 基准电压使它们能够满足此轨道通常的低电压要求。TPS50601A-SP 是一款较小的 6 A 高效降压转换器,拥有十多年的实际使用经验,用于为许多辅助轨道供电。封装兼容的 TPS7H4002-SP 也可用于为辅助轨道供电,因为它在架构上与 TPS50601A-SP 非常相似,但电流限制较低,适合较小的电感器尺寸。对于类似的 6 A 抗辐射设计,TPS7H4010-SEP 在 4×6 mm WQFN 封装中提供了极其紧凑的设计,并且是 32 V in 下空间级开关稳压器中最宽的 V 值。
EPC9186 演示板是一款三相 BLDC 电机驱动逆变器板,采用 EPC2302 eGaN FET,额定电压为 100 V,R DS(on_max) 为 1.8 mΩ。EPC9186 每个开关位置使用四个并联的 GaN FET,可提供高达 212 A pk (150 A RMS) 的最大输出电流。该板支持电机驱动应用中高达 100 kHz 的 PWM 开关频率。EPC9186 包含支持完整电机驱动逆变器所需的所有关键功能电路,包括栅极驱动器、稳压辅助内务电源、电压和温度感应、精确电流感应和保护功能。主要部分如图 1 所示。EPC9186 可与各种兼容控制器匹配,由各种制造商支持,利用现有资源实现快速开发。
模块 I:电子学简介 [12 小时] 电子设备及其应用、信号、模拟和数字信号、放大器。线性波形整形电路:RC LPF、积分器、RC HPF、微分器。半导体特性、固体分类、硅能带、本征和非本征半导体、半导体电流、霍尔效应、扩散电流、漂移电流、迁移率和电阻率。模块 II:半导体二极管 [12 小时] pn 结理论、V-I 特性、负载线分析、二极管等效电路、二极管电路分析、过渡电容和扩散电容。二极管电路的应用;整流器、限幅器、钳位器。滤波电路、特殊用途二极管:齐纳二极管、LED、光电二极管、隧道二极管、变容二极管、肖克利二极管。激光基础知识。模块 III:BJT 和 FET [12 小时]
由于电流流入BQ7690X上的细胞输入引脚,而平衡处于活动状态时,因此在不暂时禁用平衡的情况下无法进行细胞电压测量。因此,在平衡过程中,修改了设备的细胞电压测量和评估细胞电压保护的时机。在任何单元的平衡都处于活动状态时,在测量细胞电压以及共享插槽测量过程中,在每个ADSCAN中暂时禁用平衡FET。为了满足细胞平衡进行定期测量的需求,设置:配置:电源config [cb_loop_slow [1:0]]配置位在细胞平衡处于活动状态时修改单元电压测量时间,以增加平均平衡电流。此修改涉及替换具有相同宽度的空闲插槽所选ADSCAN中的测量值,以使平衡保持较高的时间百分比。
ABSTRACT: The realization of next-generation gate-all-around field-effect transistors (FETs) using two-dimensional transition metal dichalcogenide (TMDC) semiconductors necessitates the exploration of a three-dimensional (3D) and damage-free surface treatment method to achieve uniform atomic layer-deposition (ALD) of a high-k dielectric film on the inert surface of a TMDC channel.这项研究开发了对MOS 2的BCl 3等离子体衍生的自由基处理,以使MOS 2表面功能化,以使超薄AL 2 O 3膜的随后ALD函数。微观结构验证证明,在平面MOS 2表面上大约2 nm厚2 O 3膜的覆盖范围,并使用从基板漂浮的悬浮的MOS 2通道确认了该技术对3D结构的适用性。密度功能理论计算由光学发射光谱和X射线光电子光谱测量值支撑,揭示了Bcl激进分子主要由BCL 3等离子体产生,并吸附在MOS 2上,并促进了Ultrathin Ald-Ald Ald-Ald 2 O 3膜的均匀成核。拉曼和单层MOS 2的光致发光测量以及底部门控的FET的电测量结果证实,由Bcl 3等离子体衍生的自由基治疗造成的可忽略不计。最后,证明了具有超薄ALD-Al 2 O 3(〜5 nm)栅极介电膜的顶部门控FET的成功操作,表明预处理的有效性。关键字:MOS 2,表面功能化,BCl 3等离子体,自由基,原子层沉积,高K介电
在过去的几十年中,SI金属 - 氧化物 - 氧化物 - 官方局部效应晶体管(MOSFET)的设备缩放缩放,遵循摩尔定律,驱动了构成金属 - 氧化物 - 氧化物 - 氧化物 - 溶剂导体(CMOS)集成的cir- cir- cir- cir- cir- cir- cir- cir-cuits的快速发展[1-3]。最近,随着常规设备缩放的物理极限,Si mosfets的性能提高越来越难以实现[4]。较高的Channel迁移率有效地改善了MOSFET的性能,通过应用扭曲的SI技术,这已经很好地证明了这一点[5,6]。但是,仍然需要先进的MOSFET技术来进一步提高CMOS设备的性能。移动性高于SI的替代通道材料引起了人们对改善MOSFET性能的极大兴趣。在这些高迁移率材料中,GE和GESN由于其高迁移率以及SI平台上的出色整体性而有希望[7-12]。
摘要—在这项工作中,我们展示了原子层沉积 (ALD) 单通道氧化铟 (In 2 O 3 ) 栅极环绕 (GAA) 纳米带场效应晶体管 (FET),该晶体管采用了后端制程 (BEOL) 兼容工艺。在 In 2 O 3 GAA 纳米带 FET 中,实现了 19.3 mA/µ m(接近 20 mA/µ m)的最大导通电流 (I ON ) 和 10 6 的开/关比,其通道厚度 (T IO ) 为 3.1 nm,通道长度 (L ch ) 为 40 nm,通道宽度 (W ch ) 为 30 nm,介电 HfO 2 为 5 nm。采用短脉冲测量来减轻超薄通道层中流动的超高漏极电流引起的自热效应。 In 2 O 3 FET 获得的创纪录高漏极电流比任何传统单通道半导体 FET 高出约一个数量级。这种非凡的漏极电流及其相关的导通状态性能表明 ALD In 2 O 3 是一种有前途的氧化物半导体通道,在 BEOL 兼容单片 3D 集成方面具有巨大的发展机会。
该通道是通过电容耦合和在栅极电极上施加适当的偏压来实现的。然而,在传统 FET 架构中,卤化物钙钛矿在室温和低频(尤其是直流操作)下的电流调制具有挑战性,这主要是由于钙钛矿层的混合离子-电子特性。[2] 溶液处理的 FET 通常以累积模式工作,而传统的 Si 基晶体管则以反转模式工作,其中耗尽层将导电通道与半导体块体隔离。为了实现电流的栅极调制和累积模式下的大开关电流比,需要具有低离子浓度的钙钛矿层。在高离子浓度下,如图 1a 所示,无法形成累积通道,因为栅极场被移动离子屏蔽,如图 1b 所示。只有当栅极偏压足够大以至于离子无法完全屏蔽栅极场时,才能观察到场效应电流。因此,形成一个积累层,如图 1c 所示。溶液处理的钙钛矿中可移动离子的浓度估计为 10 25 m − 3 的数量级,[3,4] 导致表面电荷密度为几个 μ C cm − 2,例如甲基铵卤化铅的表面离子密度为 5 μ C cm − 2。[3] 当使用厚度为 200 nm 的典型 SiO 2 栅极电介质(相对介电常数,k = 3.9)时,如此大的密度需要施加大于 300 V 的栅极电压才能感应积累通道,但这是不切实际的,因为它会导致电介质击穿。因此,钙钛矿 FET 中的电流调制主要在低温下实现,此时离子电导率显著降低,或者在高频下使用脉冲模式操作,此时离子无法响应电场的快速变化。[5] 低温或高频操作严重限制了钙钛矿 FET 的实际应用。为了解决这些问题,人们尝试了材料改性,例如合成单晶微板、[6] 准二维纳米片 [7] 或多组分钙钛矿 [8,9]。然而,这些方法可能会损害高通量制造、可重复性或高效电荷传输。因此,减轻或补偿离子迁移率对于实现实用的钙钛矿基 FET 至关重要。在这里,我们建议使用能够诱导大表面电荷密度的介电材料,例如