生物电界面连接各种长度尺度上的材料和生物系统,从亚细胞尺寸到组织和器官水平。近几十年来,界面的发展取得了显著增长。自 21 世纪初以来,该领域已从膜片钳、微电极阵列 (MEA) 和场效应晶体管 (FET) 发展到基于微创、超小型和生物相容性纳米材料的传感和调制技术 1–3 。到目前为止,研究一直在利用具有合理设备结构和高效制造方法的纳米级导电材料来开发神经科学、心血管疾病研究、微生物相关能源系统和许多其他不断扩展的领域的新应用 4–9 。半导体、碳、金属及其复合材料和氧化物是用于界面的材料,可催化深部脑刺激器、视网膜假体、植入式人工起搏器和微生物燃料电池的开发以及个性化医疗的探索取得重大进展 10–14 。这些发展增强了更好地理解细胞、组织和器官系统内和之间复杂的电生理生物过程的能力。
摘要:半导体二维 (2D) 材料由于其丰富的能带结构和在下一代电子器件中的良好潜力而引起了广泛的研究关注。在本文中,我们研究了具有双栅极 (DG) 结构的 MoS 2 场效应晶体管 (FET),该结构由对称厚度的背栅极 (BG) 和顶栅极 (TG) 电介质组成。通过排除接触影响的四端电测量揭示了 DG-MoS 2 器件中厚度相关的电荷传输,并且还应用了 TCAD 模拟来解释实验数据。我们的结果表明,量子限制效应对 MoS 2 沟道中的电荷传输起着重要作用,因为它将电荷载流子限制在沟道的中心,与单栅极情况相比,这减少了散射并提高了迁移率。此外,温度相关的传输曲线表明,多层 MoS 2 DG-FET 处于声子限制的传输状态,而单层 MoS 2 表现出典型的库仑杂质限制状态。
HIP4080 没有像 HIP4081 那样的输入协议,除了通过 DIS 引脚外,该协议还可以使两个低功率 MOSFET 保持关闭状态。IN+ 和 IN- 是比较器的输入,比较器控制桥接,使得一次只有一个低功率器件处于打开状态(假设 DIS 为低)。但是,通过在芯片启用时控制下部开启延迟引脚 LDEL,可以保持两个下部 MOSFET 处于关闭状态,如图 2 所示。将 LDEL 拉至 V DD 将通过输入比较器无限期地延迟下部开启延迟,并使下部 MOSFET 保持关闭状态。在下部 MOSFET 关闭且芯片启用的情况下,即 DIS = 低,IN+ 或 IN- 可以在整个周期内切换,从而正确设置上部驱动器输出。完成此操作后,LDEL 将释放到其正常工作点。至关重要的是,当 LDEL 保持高电平时,IN+/IN- 必须切换一个完整的周期,以避免击穿。此启动过程可以通过图 2 中的电路的电源电压和/或芯片启用命令来启动。
摘要:高接触电阻一直是开发高性能过渡金属二硫属化物 (TMD) 基 p 型晶体管的瓶颈。我们报道了简并掺杂的少层 WSe 2 晶体管,其接触电阻低至 0.23 ± 0.07 k Ω·μ m/接触,其使用氯化铂 (IV) (PtCl 4 ) 作为 p 型掺杂剂,该掺杂剂由与互补金属氧化物半导体 (CMOS) 制造工艺兼容的离子组成。栅极长度为 200 nm 的顶栅器件表现出良好的开关行为,这意味着掺杂剂扩散到栅极堆栈中并不显著。这些器件在空气中放置 86 天后未进行任何封装,同时在 78 K 温度下保持简并掺杂状态,且压力低于 10 − 5 Torr,突显了掺杂剂的稳定性。所提出的方法阐明了对具有减薄肖特基势垒宽度的晶体管进行图案掺杂以获得低接触电阻器件的高稳定性方法的可用性。关键词:二硒化钨、电荷转移掺杂、场效应晶体管、二维材料、高稳定性
并取得了令人瞩目的成果[7−11]。为了最大限度地减少β-Ga2O3 MOSFET的SHE,已经提出了一些建设性的方法[12,13],例如离子切割技术[14]、转移到异质衬底[15,16]和结构设计[17]。新的测量方法已经被用来表征β-Ga2O3 MOSFET的瞬态温度分布[18]。关于β-Ga2O3基MOSFET的大部分报道都集中在追求高PFOM和探索新的结构,然而实际应用中需要大面积结构来维持高的通态电流。对于大面积结构,由于表面积与体积比较小,SHE会比小器件更严重,值得研究。制备高性能大面积β-Ga2O3晶体管的主要挑战是材料生长的不均匀性和工艺流程的不稳定。有报道称,多指β-Ga2O3 MOSFET能够提供300 V的开关瞬变,电压斜率高达65 V/ns [19],显示出巨大的潜力。尽管如此,电
一种非常有前途的原子薄半体导管的材料类是过渡金属二分法元素(TMDC)。该材料类在MX 2(M¼TransitionsMetal;x¼s,se,te)层中具有较强的共价键结晶,但相对较弱,但相对较弱,可以切断大量晶体的单层。由单层制造的设备可以描述为仅接口的设备,并且已经显示了TMDC作为气体传感器的应用。[14]为了能够在高性能的FET应用中使用TMDC,过度出现的主要挑战是这些单层的缺陷控制。[15]两种主要类型的缺陷是晶界,金属或金属葡萄染色体空位。既会降低材料的电性能,但是空缺也为使单层官能化的额外途径开辟了一条额外的途径,可以在传感器应用中进行优势。[16 - 20]最近,已经显示了使用去离子化(DI)水的基于MOS 2的FET装置的运行;但是,使用MOS 2多层。[21,22]这些结果构成了在
亲爱的编辑,铁电隧道FET(FETFET)是关于新型低功率电子设备的越来越重要的研究主题[1,2],因为铁电气材料的负电容效应有助于提高潜在的通道并增加TFET中的状态电流。铁电疗法显示辐射性能对辐射的辐射硬性能,这对于基于这种苛刻环境中使用的这种材料的设备很有帮助[3,4]。单事件传播(集合)效应是由空间或陆地辐射环境中的高能量颗粒引起的,这可能会导致软错误的可能性,甚至可能导致航天器中的灾难性事故[5,6]。对重离子打击下FETFET的辐射效应的搜索对于评估这些设备在太空环境中的潜在误差非常重要。为了提高设备的性能,我们提出了一种新的硅在绝缘子双门栅极FETFET(SOI DG-FETFET)中,并使用Si:HFO 2铁电栅极介电。使用Synopsys Sentaurus Tech-Nology Computer Adided Design(TCAD)Simulator [7]研究了SOI DG-FETFET中的单事件传播效应[7]。设备结构和仿真设置。
摘要:已经广泛研究了基于HFO 2的铁电材料,用于将其用于铁电FET,这与常规CMOS过程兼容。但是,材料固有的疲劳特性的问题限制了其用于设备应用的潜力。本文系统地研究了拉伸应力和退火温度对ZR掺杂的HFO HFO 2铁电灯面临的耐力和铁电特性的影响。残余极化(P R)显示了退火温度的趋势增加,而在与应激或退火温度的关系方面,强制性电场(E C)的变化并不明显。此外,拉伸应力的应用确实有助于将耐力特性提高到两个数量级的数量级,而耐力特性显示出与退火温度负相关的趋势。总体而言,尽管应力对HZO材料的铁电性的影响并不明显,但它对其耐力的特性具有很大的影响,并且可以优化材料的耐力,而铁电性对温度的依赖性更高。通过压力优化HZO材料的耐力特性可以促进其在未来的集成电路技术中的开发和应用。
与传统体硅相比,绝缘体上硅(SOI)衬底具有许多优势,包括低漏电流、低电容、低功耗、更好地抵抗短沟道效应(SCE)和卓越的缩放能力[1 – 4]。这使得SOI衬底不仅适用于传统的MOSFET,而且由于天然的衬底隔离[5 – 8]和更简单的多栅极设计,它也对新型半导体器件具有吸引力,例如TFET和Z2-FET。此外,建立在SOI平台上的光电探测器(PD)也表现出优异的光电性能。高工作速度、高抗辐射和低寄生电容的优势使基于SOI的PD在电子和光子集成电路(EPIC)、光通信系统和航空航天等许多应用领域中极具竞争力[9 – 16]。为了在 SOI 薄膜中形成 pn 光电二极管,通常使用常规离子注入来掺杂 Si 沟道 [17]。然而,离子注入会损坏并降低 Si 的质量,这个问题在缺乏种子层以促进再结晶的超薄 SOI 薄膜中尤其严重。此外,用于激活掺杂剂的高温退火可能会引起应力和损坏,并进一步降低器件的性能。为了克服这些缺点,可以使用电场诱导的静电掺杂 [18,19] 来形成 pn 结并完全避免离子注入。之前,我们已经证明在
valleytronic,光学,热,磁性和铁电性能在新型异质结构和设备中。它们的弱层间耦合可以通过机械堆叠2D材料来相对简单地制造垂直侵蚀。另一方面,侧面异质结构(LHSS)的层次是现代金属 - 氧化物 - 氧化物 - 氧化导向器磁场晶体效应的基于微电极的基本结构,由于需要更多的复杂生长和兴奋剂技术,因此受到了探索的较少。受到可能从2D LHSS出现的潜在杰出性能和多功能调整自由的鼓励,在该领域进行了多项实验和理论研究。[1] The earliest experimentally realized 2D LHSs were those between graphene and hexagonal boron nitride (hBN) [2–6] grown by chemical vapor depo- sition (CVD), from which prototype field effect transistors (FETs) were demonstrated [2–5] Shortly later, a series of transition metal dichalcogenide (TMDC) mono layer (ML)通过一步或两步的CVD方法制备LHSS,包括MOS 2,MOSE 2,WS 2和WSE 2的组合。[7-12]所有这些TMDC LHSS都显示二极管样电流的整流效应。[26]同时,制造了具有高性能的原型设备,包括光电二极管和互补的金属 - 氧化物 - 半导体晶体管逆变器,[7,10–12]通过控制良好的气体流量切换技术或光刻辅助辅助阴离子的替代品,TMDC LHS的脱位量很清晰。 LHSS仅由一种材料组成,但具有不同的厚度,[16,17]或介电环境[18]在其界面上,产生了电子带隙,整流和光伏效应的修饰。将材料与不同空间对称性组合的2D LHS的其他形式,例如石墨烯-TMDC LHSS [19-22] HBN-TMDC LHSS,[19]石墨烯纳米替伯型LHSS与不同的兴奋剂[23]或宽度[23]或宽度[24] [24]单钙化剂 - 二甲基二苯二苯lhss [26]是通过各种增强的CVD方法创建的,例如机械 - 脱落的辅助CVD,[19]种子促进的CVD,[20]由等离子体蚀刻定义的模板生长,由等离子体蚀刻[21] [21] [21]和热层转化化学构图。
