用于使用........................................................................................................................................................................
摘要 基于牛津纳米孔技术 (ONT) 的甲基化测序因其快速准确地对脑肿瘤进行分类而受到越来越多的认可。这一过程对于最佳患者治疗至关重要。然而,目前广泛的临床应用受到对新鲜冷冻活检的需求而不是标准福尔马林固定石蜡包埋 (FFPE) 样本的限制。我们的研究探讨了 FFPE 对 DNA 甲基化的影响,并提出了一种基于 ONT 的 FFPE 肿瘤分类的开发和验证方案。我们提出了一种实用的解决方案,用于在常规临床环境中精确诊断脑肿瘤,并在护理点及时做出治疗决策,而不会干扰手术室标准。关键词:肿瘤分类、牛津纳米孔技术、表观遗传分析、DNA 甲基化、FFPE 活检样本、中枢神经系统肿瘤、精准医学、病理学。准确分类肿瘤类型和亚型对于促进全面精准的患者治疗至关重要 1-3 。例如,世界卫生组织 (WHO) 对中枢神经系统 (CNS) 肿瘤的分类涵盖 10 多个主要肿瘤类别,每个类别又包含许多亚类,总共有 100 多个不同的实体,需要不同的治疗方法,并且与不同的预后和临床病程相关 4。这些肿瘤实体在形态、空间和遗传特征上经常表现出相似性 5–7,因此难以区分它们。此外,神经病理学家可能会对组织病理学结果提供不同的解释,这增加了该过程的主观性 8。另一方面,表观遗传学,特别是 DNA 甲基化——已被证明是一种强大而稳定的工具,可准确区分绝大多数这些肿瘤亚型 2,因此基于甲基化的分类已纳入 2021 年 WHO 对 CNS 肿瘤的分类 4。因此,检查肿瘤甲基化模式最近已成为临床诊断程序的一部分,基于甲基化的分类器已经可用于中枢神经系统肿瘤和肉瘤,其他用于不同肿瘤类型的分类器正在开发中 9 。然而,将 DNA 甲基化纳入脑肿瘤的诊断检查已被证明具有挑战性。评估这些甲基化模式的“金标准”方法是 DNA 杂交阵列,例如 Infinium MethylationEPIC 阵列 10 ,但它具有明显的缺点,包括费用高、周转时间长、所需起始材料量大(最低 500ng DNA,最好是 1ug DNA),需要积累多个样本才能获得结果,并且需要训练有素的人员,这与临床需求通常要求的短时间范围不符 。
抽象背景:福尔马林固定,隔离(FFPE)组织在识别风险生物标志物方面具有许多优势,包括广泛的可用性和扩展后续终点的潜力。但是,源自档案FFPE样品的RNA质量有限。在这里,我们确定了确定哪些FFPE样品有可能成功提取RNA,库制备和生成可用RNASEQ数据的参数。方法:我们优化了旨在与FFPE样品一起使用的图书馆制备方案,该方案使用七个FFPE和新鲜的冷冻复制对,并使用来自患有良性乳房疾病的女性的130个FFPE活检的研究集测试了优化的方案。指标,并将其与生物信息学测序汇总统计数据进行了比较。最后,建立了一个决策树模型,以了解由生物信息学指标确定的序列前实验指标与QC通过/失败状态之间的关系。结果:失败的生物信息学QC的样品往往在同类中的样本中位相关性较低(Spearman相关性<0.75),映射到基因区域的读取数量少(<2500万),或较少的检测基因(11,400个具有TPM> 4)的检测基因#)。QC失败样品的中值RNA浓度和捕获前库值分别为18.9 ng/ul和2.08 ng/ul,其显着低于QC Pass样品的显着低(40.8 ng/ul和5.82 ng/ul)。我们基于输入RNA浓度,输入库值值构建了决策树模型,并在预测FFPE样本的QC状态(PASS/FAIL)时达到了F分数为0.848。结论:我们通过评估生物信息学和样品指标,为乳腺组织中的FFPE样品提供了生物信息学质量控制建议。我们的结果表明,用于文库制备的25 ng/ul FFPE提取的RNA的最低浓度和1.7 ng/ul预制库的输出,以实现足够的RNA-Seq数据,以进行下游生物信息学分析。
COSMX™SMI和解码器探测器未提供和/或交付给德国联邦共和国,用于在德国联邦共和国中使用,用于检测细胞RNA,Messenger RNA,MicroRNA,MicroRNA,核糖体RNA及其任何组合的方法,用于在荧光中以荧光量的分析,以进行杂交的分析,以进行分析,以进行分析,以进行分析。 (哈佛大学)作为EP 2 794 928 B1的德国部分的所有者。未经哈佛大学(哈佛大学)的总统和研究员的同意,禁止检测细胞RNA,Messenger RNA,microRNA,核糖体RNA及其任何组合的用途。
摘要避免由损伤引起的测序错误是准确识别 DNA 样本中中到稀有频率突变的关键步骤。在 FFPE 样本中,胞嘧啶部分的脱氨作用代表了导致 DNA 材料丢失和测序错误的重大损伤。在这项研究中,我们证明,虽然胞嘧啶和甲基化胞嘧啶部分的脱氨作用造成的损伤会导致 C 到 T 的转换升高,但错误概况和调解策略是不同的并且容易区分。虽然胞嘧啶脱氨引起的损伤诱导测序错误是由 NGS 工作流程中常用的末端修复步骤驱动的,但甲基化胞嘧啶脱氨引起的 DNA 损伤是 CpG 位点测序错误的另一个主要因素。尿嘧啶 DNA 糖基化酶和人胸腺嘧啶 DNA 糖基化酶可以分别消除和减轻 FFPE DNA 样本中的两种损伤,从而显著提高中等等位基因频率变异鉴定的测序准确性。
下一代测序(NGS)的数据高度取决于库的质量。XGEN CFDNA和FFPE DNA库准备套件与IDT XGEN NGS杂交捕获工作流程配对,为研究人员提供了一种行业领先的解决方案,以生成高质量的测序库。IDT与第三方研究组织合作,比较了XGEN CFDNA和FFPE DNA库Prep套件和自定义杂交捕获(HYB CAP)与两个竞争对手。IDT XGEN NGS工作流解决方案由于较高的样本转换效率和全面的XGEN自定义杂交捕获面板设计而优于竞争对手的工作流程。XGEN试剂被设计为一起使用,尽管它们在竞争对手HYB Cap Workfrows中使用时提高了库的复杂性和测序指标,但最高质量的数据来自使用完整的IDT XGEN NGS NGS Workflow解决方案。
未处理的新鲜心脏组织是研究心脏生物学和疾病的DNA甲基化模式的最佳组织材料。但是,很难获得新鲜组织。因此,以冷冻或福尔马林固定的,石蜡填充(FFPE)存储的组织被广泛用于DNA甲基化研究。尚不清楚存储条件是否改变心脏组织中的DNA甲基化。在这项研究中,我们比较了新鲜,冷冻和FFPE心脏组织的DNA甲基化模式,以研究储存方法是否影响DNA甲基化结果。,我们使用甲基化甲基化测定法获得了来自九个个体的新鲜,冷冻和FFPE组织中的全基因组甲基化水平。我们发现,与新鲜和冷冻的组织相比,在FFPE样品中,在FFPE样品中高估了21.4%的DNA甲基化水平,而5.7%被低估了。对DNA甲基化模式的重复分析显示了冷冻和FFPE组织的高可重现性(精度)。总而言之,我们发现冷冻和FFPE组织给出了可再现的DNA甲基化结果,并且冷冻和新鲜组织产生了相似的结果。
™DNA多样本Ultra 2.0套件是开发出可从多种样品矩阵的高质量DNA快速纯化的。DNA可以在下游应用的广泛分子生物学中使用,例如测序,基因分型和qPCR。该协议通过使用翠鸟自动隔离DNA自动隔离
NGS小组,FFPE融合分析(RNA),FFPE☐结肠(BRAF/KRAS/NRAS/PIK3CA)☐肺(ALK,ROS1和RET)☐CLL突变分析☐肺(BRAF/kras/kras/nras/nras/pik3ca/fuson and eff in nraver/exnaly nrative) IST(BRAF/KIT/PDGFRA- POSIGNA/PAM50☐igh☐黑色素瘤(BRAF/KIT/NRAS/HRAS)(子类别和风险得分)☐TCR☐MTC(BRAF/KRAS/HRAS/HRAS/RET) BRCA2/PIK3CA)☐LOH1P19Q (包括 IDH1/2- ☐ B-ALL ☐ 乳腺(PIK3CA)突变分析),诊断时的 FFPE 母细胞比例:NGS 面板,cfDNA/血浆 ☐ TERT 启动子突变分析 ☐ MRD 随访,☐ 肺(EGFR/KRAS/NRAS/BRAF)(c.1-124C>T / c.1-146C>T)天:
MI Cancer Seek 需要从 FFPE 组织标本中分离 TNA。福尔马林固定、石蜡包埋 (FFPE) 肿瘤组织标本的收集和制备遵循标准病理学实践。FFPE 标本可以未染色的载玻片或 FFPE 组织块的形式接收。在进行 MI Cancer Seek 检测之前,需要准备并由委员会认证的病理学家进行苏木精和伊红 (H&E) 染色的载玻片,以确认存在侵袭性癌症,并确保有足够的组织和肿瘤内容进行检测。最小组织面积为 25 mm 2 ZLWK • WXPRU FRQWHQW LV UHTXLUHG IRU 0, &DQFHU 6HHN 必要时,Caris 将对标本进行手动显微切割,以增加检测的细胞密度并尽可能避免干扰物。 H&E 载玻片将进行注释以进行手动显微切割,并将进行显微切割以丰富肿瘤内容和/或避免可能干扰的区域,例如坏死组织、脂肪细胞或黑色素。建议解剖 120 mm 2 组织面积作为 TNA 提取的最佳组织输入。