1. 介绍和工作范围 7 1.1 项目概况 7 1.2 项目描述 7 1.2.1 项目地点和位置 7 1.2.2 拟议布局 9 1.2.3 拟议的电池技术 12 1.3 锂离子电池 13 1.4 电池储能系统 16 1.4.1 目前美国 BESS 设施的数量 16 1.5 潜在的 BESS 危险 – 热事件和爆炸 18 1.5.1 危险描述 18 1.5.2 历史 BESS 热事件回顾 19 1.5.3 火灾空气释放评估 20 1.6 场外后果分析简介 22 1.6.1 目的 23 1.6.2 OCA 注意事项 24 2. 设计和安全措施 32 2.1 设施安全设计和适用规范和标准 32 2.1.1 消防规范和行业标准 33 2.1.2 应急响应计划和危害缓解分析 34 2.2 被动设计措施 34 2.3 主动设计措施 35 3. 潜在空气排放 37 3.1 简介 37 3.2 估算潜在火灾的排放量 40 3.3 潜在空气排放的毒理学考虑 47 4. 场外后果分析 49 4.1 简介 49 4.2 用于场外后果分析的扩散模型的选择 50 4.3 模拟的排放率 51 4.4 扩散建模的源参数选择 52 4.4.1 释放高度 53 4.4.2 释放横向范围 53 4.4.3 释放温度 54 4.4.4 释放出口速度 54 4.5 AERSCREEN 建模所用的参数 54 4.6 结果与讨论 57 5. 结论 68
调查显示,卡拉尼什的沉积物由分选不良的中质粉砂和一层薄薄的砂质粘土组成,粉砂被归类为“环潮细砂”,碳氢化合物和金属浓度略高于背景水平,这被认为表明存在历史钻探活动。该地区有许多凹陷处有高细砂,但没有一个是附件一中甲烷衍生的自生碳酸盐,而 Scanner Pockmark SAC 距离卡拉尼什 33 公里。物种表明粉砂沉积物主要包括环节动物(多样性和成分占主导地位)、软体动物、甲壳类动物和棘皮动物,包括海蛇尾。存在带有洞穴和土丘的严重生物扰动基质,表明可能存在被 OSPAR 列入受威胁或正在减少的栖息地“海上围栏和穴居巨型动物群落”和被 OSPAR 列入正在减少的海洋蛤蜊,并且该保护区位于卡拉尼什以东 56 公里的挪威边界沉积物计划自然保护海洋保护区内。
鉴于 NEO ENERGY PRODUCTION UK LIMITED 已根据《2020 年海上石油和天然气勘探、生产、卸货和储存(环境影响评估)条例》于 2024 年 3 月 4 日提出申请,且鉴于国务大臣已考虑该申请并确信该项目不太可能对环境产生重大影响;根据第 6 条规定的权力,国务大臣特此指示,该项目的同意申请无需附有环境影响评估,前提是该项目按照审查指示申请中所述并按照所附附表中规定的条件进行。
调查显示,Earn 1 井的海底沉积物由微砾砂、砾砂和砾泥砂组成,在 GEOxyz (2023a) 中被总结为“带有贝壳碎片和鹅卵石的流动粗砂”。这与欧盟自然信息系统 (EUNIS) 对 A5.27 深海环潮砂区域的栖息地分类相符,也与 NMPi (2023) 中记录的英国地质调查局 1:250,000 比例的海底沉积物类型“微砾砂”相符。该地点的主要海底特征是巨型波纹砂,波峰方向为西南偏西至东北偏东,波长为 10-15 米,振幅为 5-10 厘米。在调查区域内未发现欧盟栖息地指令所列的附件一栖息地。此外,没有证据表明具有保护重要性的特征(FOCI)或OSPAR(2008)“受到威胁/
可转移的技能工人在海洋运输,海上石油和天然气以及高级制造业的领域具有经验和技术专长,包括专业贸易合同,水运输以及重型和土木工程建设等领域。这种经验与海上风能开发有利,导致技能的高转移性和在能源部门的增材就业机会。这项研究确定了10个高度相邻的现有行业,发现这些行业中现有的71%的劳动力具有可转移的技能以支持海上风。路易斯安那州东南部的工人最集中在海上风,在新奥尔良,拉斐特,巴吞鲁日,侯马和摩根市的群集中有很高的适用性。
表达的观点是作者所陈述的观点,并且没有反映其他经理或公司总体的观点。视图截至本出版日期,视图是当前的,并且可能会发生变化。此信息可能包含有关未来事件,目标或期望的预测或其他前瞻性陈述,并且仅在指示日期开始是当前的。无法确保将实现此类事件或期望,实际结果可能与此处所示的结果显着不同。这些信息基于当前的市场状况,后者将波动,并可能因随后的市场事件或其他原因而取代。提及特定证券,资产类别和金融市场仅出于说明目的,并且不打算是,也不应将其解释为建议。本文中包含的信息是从认为是可靠但不能保证的来源获得的。未经明确书面许可,可以以任何形式复制该材料的任何部分,或在任何其他出版物中转载。
•有关ARPA-E和此特定NOFO的问题和答案(Q&AS):http://arpa-e.energy.gov/faq。•将有关NOFO的其他问题发送至:arpa-e-co@hq.doe.gov。•将有关使用ARPA-E交易所使用的问题发送到:ExchangeHelp@hq.doe.gov。在签发NOFO时,只有通过arpa-e-co@hq.doe.gov才能与申请人进行交流。这个“安静的时期”一直有效,直到ARPA-E公开宣布项目选择为止。发送到其他电子邮件地址的电子邮件将被忽略。海藻种植提供了千兆尺度的能源生物量来源,可用于燃料,塑料,肥料,化学药品和其他目前源自陆地生物量(如土地限制玉米或常规碳氢化合物来源)等产品。美国拥有任何国家的最大海上独家经济区(EEZ)(包括扩展大陆架在内的12,338,700公里2),但在某些亚洲国家证明的规模上没有海洋生物量行业。针对挑战的技术解决方案排除了低成本,缩放的海上种植将使经济增长的时代通过通过分布式生产来供应源和弹性的多样化,从而增强美国能源和工业商品市场。当今美国水域种植的挑战可以通过与劳动力和效率低下的实践相关的高成本总结,缺乏可以出售生物质的大型可靠的市场,并且缺乏工业试验所需的大规模和可靠的耕种。利用能源合资企业海上(HAEJO)计划的自治计划将支持开发技术解决方案,以将海藻生物量种植成本降低四倍,从今天的低至千万美元降低到每千万美元的$ 120-275
在2024年10月29日,欧盟(EU)对中国电池电动汽车(BEV)施加了17%至35.3%的反补偿职责,旨在抵消据称促进中国BEV出口到欧盟的补贴。该决定限制了一个为期一年的机构过程,并以欧盟内部分歧为标志。为了作出回应,中国以政治上敏感的农业食品贸易为目标,以迫使欧盟重新考虑其行动。尽管欧盟和中国之间正在进行的谈判探索了诸如最低价格或配额之类的妥协,但由于世界贸易组织的关注以及类似策略的过去失败,进步已经停滞不前。由于危及的基本利益,谈判是具有挑战性的,这些利益超越了电动汽车。欧盟试图通过降低与中国的经济关系构成的风险来增强其经济安全议程,同时还努力建立开放,更平衡的关系。对于中国来说,BEV向欧盟的出口对于其令人沮丧的经济环境中的增长至关重要,对于实现该国更广泛的发展目标至关重要。这一争议强调了越来越不确定的世界中经济安全与自由贸易要求之间的矛盾。
结论:关税对加拿大的基础设施部门及其既定的 P3 模式构成了重大挑战。供应链中断、成本上升和市场不确定性的连锁效应要求公共和私人利益相关者采取积极主动的策略来减轻潜在影响。这包括重新审视合同框架、倡导政策明确性、准备缓解方案(例如从不适用关税的其他国家采购供应品(机械、电气、铝等)),以及探索保护基础设施部门免受长期经济波动影响的措施。这包括确保每个管辖区内参与 P3 的政府利益相关者协调他们的方法。如果不及时干预,这些关税可能会损害提供高质量、具有成本效益的基础设施的能力,而这些基础设施可支持加拿大的经济增长和竞争力。
我们已经使用Edna方法研究了Kriegers Flak Offshore Wind Wind Find的生物多样性,以刮擦三个风力涡轮机塔的海面下方,以及Edna样品在水柱上下的Edna样品靠近同一塔楼和离岸风电场外的水柱上部和下部的屋顶。这些刮擦也已在分类法实验室中进行了比较。最后,涡轮塔的生物社会,相关的侵蚀保护,周围的沙质底部以及在自然礁的三个位置进行了从水下无人机(Prey)研究中描述,并对物种沉积物的视觉评估及其覆盖率进行了视觉评估。ROV和刮擦是作为替代计划的潜水下台的替代者,如果无法通过正常的科学潜水调查来满足要求,则无法进行海上风电场。