i。如果在2014年4月1日或之后委托进行的项目,则如果在附录I:II:II的时间表中完成此类项目,则允许额外的0.50%回报。如果该项目未完成在上面指定的时间表中,则不可允许0.5%的额外回报:iii。额外的ROE可能允许为0.50%,如果特定要素的调试将使区域/国家电网的系统运行受益:IV:IV。如果发现生成站或传输系统在商业运营下宣布,则在委员会可能决定的期限内应减少1%的回报率,而无需委托任何受限制的州长模式(RGMO)操作(RGMO)/自由州长模式操作(FGMO)(FGMO)(FGMO)(FGMO),基于数据远程远程远程触发或v. aS Processing System and As Proceptsing System:v。由各自的RLDC提交的报告,ROE应在缺乏症的期间减少1%:VI。对于少于50公里的传输线不得接受其他ROE。”
摘要。近年来,功能梯度材料 (FGM) 已用于多种不同类型的应用,并引起了广泛的研究关注。然而,我们还没有一种普遍接受的方式来表示 FGM 的各个方面。缺乏标准化词汇会给提取与不同应用相关方面相关的有用信息造成障碍。需要一种标准资源来描述 FGM 的各种元素,包括现有应用、制造技术和材料特性。这促使我们在 2016 年创建了 FGM 本体 (FGMO)。在这里,我们介绍了 FGM 本体的修订和扩展版本,其中包括四个维度的丰富内容:(1) 记录最近的 FGM 应用;(2) 重新组织框架以纳入制造过程类型的更新表示;(3) 丰富本体的公理;(4) 从通用核心本体 (CCO) 和产品生命周期 (PLC) 本体导入中级本体。该工作是在工业本体铸造厂(IOF)的框架内开展的,本体符合基本形式本体(BFO)。
摘要。本文深入研究了在XOR-XNOR细胞中应用的常规和非常规设计方法。这些单元在各种算术逻辑电路中起着至关重要的作用,在低压和功率水平下运行的VLSI设计中具有很大的计算能力。本文研究了与常规和非规定设计策略相关的困难。此外,它对当前文献中有关电路设计参数的不同XOR/XNOR单元进行了相对评估。这项研究的结果表明,低技术节点中碳纳米管现场效应晶体管(CNTFET)技术的采用显着降低了电路延迟,而浮动栅极金属氧化物半导体(FGMOS)技术在电路电力效率方面显示出卓越的解释。讨论还涵盖了FinFET技术在创建XOR/XNOR细胞中的利用。本文评估了这些XOR/XNOR细胞的电压和温度弹性。使用22nm技术节点的HSPICE工具进行了分析。基于FGMO的XOR/XNOR细胞表明,对电压和温度波动的弹性最高。采用非常规技术遇到的主要挑战涉及缺乏适当的仿真模型和复杂的制造过程。这些挑战特别阻碍了这些开拓性方法的进步和采用。