摘要:本文深入研究了增材制造功能梯度材料 (FGM) 领域的进步和挑战。它深入研究了 FGM 设计的概念方法、各种制造技术以及使用增材制造 (AM) 技术制造它们所用的材料。本文探讨了 FGM 在结构工程、汽车、生物医学工程、软机器人、电子、4D 打印和超材料等不同领域的应用。对与 FGM 相关的关键问题和挑战进行了细致的分析,解决了与生产和性能相关的问题。此外,本文预测了 FGM 发展的未来趋势,强调了对不同行业的潜在影响。结论部分总结了主要发现,强调了 FGM 在 AM 技术背景下的重要性。这篇评论为研究人员、从业者和利益相关者提供了宝贵的见解,增强了他们对 FGM 及其在不断发展的 AM 格局中的作用的理解。
摘要。功能梯度材料 (FGM) 是材料科学和工程领域的一项了不起的发明,它具有独特的性能,可用于各种应用。由于能够逐渐改变材料的成分、微观结构或机械性能等特性,FGM 具有无与伦比的适应性,使其适用于各种高强度应用。制造 FGM 的新方法之一是对粉末材料使用严重塑性变形 (SPD) 技术。粉末的 SPD 涉及几个关键步骤;该过程从选择具有不同成分和相的材料开始,然后混合粉末、冷压、SPD 方法,以及(如果需要)热处理。该过程通过表征和测试完成,以评估最终形成的 FGM 的微观结构和特性。FGM 将继续改变材料工程并推动其在许多工程领域和行业中的应用界限,因为它们表现出提高效率、耐用性和性能等有吸引力的能力。因此,本文探讨了通过 SPD 制造 FGM 的过程,并强调了其在 FGM 生产中的重要性和未来趋势。
摘要:功能梯度材料 (FGM) 在复合材料和层压板方面受到各科学和工程学会的广泛关注。这是一个独特的概念,可用于通过借助特定梯度改变材料的微观结构来形成各种类型的材料。FGM 的整体性能因其所用材料的性能而具有独特性和差异性。已经开发了许多制造 FGM 的技术,一些是传统的,一些是先进的。每种技术都有自己的优点和缺点。独特的物理、制造和结构特性使 FGM 应用广受欢迎且令人向往。本文列举了 FGM 制造过程的细节及其优缺点。它根据 FGM 的母材讨论了 FGM 在工程和工业领域的应用。本文将作为研究人员、设计人员和制造商了解 FGM 生产和应用的指导目录。关键词:功能梯度材料、复合材料、层压板。
摘要:增材制造 (AM) 是一种变革性的制造技术,能够根据 3D 建模数据逐层直接制造复杂部件。在 AM 应用中,功能梯度材料 (FGM) 的制造具有重要意义,因为它有可能提高多个行业的组件性能。FGM 是通过不同材料之间的梯度成分过渡制造的,从而能够设计具有位置相关机械和物理特性的新材料。本研究全面回顾了有关在 AM 中实施机器学习 (ML) 技术的已发表文献,重点介绍了基于 ML 的 FGM 制造工艺优化方法。通过对文献的广泛调查,本综述文章探讨了 ML 在解决 FGM 制造固有挑战中的作用,并涵盖了参数优化、缺陷检测和实时监控。本文还讨论了在 FGM 的 AM 制造中采用基于 ML 的方法的未来研究方向和挑战。
功能梯度材料 (FGM) 是一种先进的复合材料,其材料特性在多个方向上呈现逐渐过渡,通过在整个结构中策略性地改变材料成分,可以提高性能。这种逐渐变化可以增强转子的结构耐久性、耐热性和减振性等,使 FGM 在航空航天、汽车和工业机械等高性能应用中具有优势。尽管有这些好处,但 FGM 的材料特性可能会给准确预测其动态行为带来独特的挑战。本研究旨在开发一种能够捕捉 FGM 转子动态特性的分析模型。该模型将有助于更好地理解 FGM 转子在各种条件下的行为,为优化设计参数以提高动态性能提供见解,并分析转子的不稳定性。
摘要:功能梯度材料 (FGM) 可在零件体积上提供离散或连续变化的属性/成分。过去,由于制造方法的限制,FGM 的广泛应用速度不够快。制造技术(尤其是增材制造 (AM))的重大发展使我们能够制造具有特定体积/表面变化的材料。使用 AM 方法制造 FGM 可以让我们弥补传统方法的一些缺点,并以经济高效的方式生产复杂且近净成型的结构,更好地控制梯度。桶光聚合 (VP) 是一种 AM 方法,其工作原理是逐层固化液态光聚合物树脂,近年来,由于其成本低、表面质量控制高、无需支撑结构、材料不受限制等优点而受到高度重视。本文回顾了使用 VP 方法制造 FGM 的现状和未来潜力。结论是,打印机硬件设置和软件、设计方面和打印方法的改进将加速 VP 方法在 FGM 制造中的使用。
摘要。近年来,功能梯度材料 (FGM) 已用于多种不同类型的应用,并引起了广泛的研究关注。然而,我们还没有一种普遍接受的方式来表示 FGM 的各个方面。缺乏标准化词汇会给提取与不同应用相关方面相关的有用信息造成障碍。需要一种标准资源来描述 FGM 的各种元素,包括现有应用、制造技术和材料特性。这促使我们在 2016 年创建了 FGM 本体 (FGMO)。在这里,我们介绍了 FGM 本体的修订和扩展版本,其中包括四个维度的丰富内容:(1) 记录最近的 FGM 应用;(2) 重新组织框架以纳入制造过程类型的更新表示;(3) 丰富本体的公理;(4) 从通用核心本体 (CCO) 和产品生命周期 (PLC) 本体导入中级本体。该工作是在工业本体铸造厂(IOF)的框架内开展的,本体符合基本形式本体(BFO)。
摘要 功能梯度材料 (FGM) 是一种特殊类型的先进复合材料,具有独特的功能和优势。FGM 的主要特性是其成分和微观结构在其维度上逐渐变化,从而增强了性能。FGM 由两种或两种以上的材料组成,以根据 FGM 的应用实现所需的特性。因此,FGM 在众多应用中引起了极大的兴趣。本文回顾了各种制造技术、分类及其在假肢领域的应用。 关键词:功能梯度材料 (FGM);加工技术;分类;应用;假肢。 1. 简介 纵观历史,从第一个人类到现在,材料一直在人类的生活中发挥着重要作用。在不同的时代,人类使用从自然界获得的不同材料或为了方便在许多应用中使用而人工制备的材料。虽然材料的特性是固有的,但它们可以通过多种方式改变。例如,通过组合材料或改变材料的底层结构。自古以来,人们就通过加工来改变材料的性能。合金化是将一种金属在熔融状态下与其他金属或非金属相结合,使其具有不同于母体材料的性能。人类历史上出现的第一种合金是青铜,它实际上是铜和锡的合金。青铜发明于公元前 3500 年,因此这个时代被称为青铜时代 [1]。然而,这种方法有局限性,即由于热力学平衡极限 [2],可溶解在另一种材料溶液中的材料量有限,并且禁止将熔点相差很大的两种不同材料合金化。为了克服这个问题,人们使用了粉末冶金 (PM) 方法,其中合金以粉末形式生产。这种方法具有优异的性能,但它有一些
功能分级的材料(FGM)具有从一个区域到另一个区域的平稳差异,近年来一直受到越来越多的关注,尤其是在航空航天,汽车和生物医学领域。但是,他们尚未发挥全部潜力。在本文中,我们探讨了在药物输送的背景下,FGM的潜力,在此,独特的材料特征为所需应用提供细化药物释放的潜力。具体来说,我们基于空间变化的药物扩散率开发了从薄膜FGM中释放药物的数学模型。我们证明,取决于扩散率的功能形式(与材料特性有关),可以获得广泛的药物释放曲线。有趣的是,这些释放曲线的形状通常无法从具有恒定扩散率的均匀介质中实现。