dharanir.pec@gmail.com, ramesh.revathy@gmail.com, danesh.kn1@gmail.com Received : 31 July 2023, Revised: 14 October 2023, Accepted : 21 October 2023 * Corresponding Author ABSTRACT Oral cancer presents a pressing global health concern, ranking as the eighth most prevalent cancer worldwide and leading to a significant number of deaths, particularly evident in India with an annual toll of大约有130,000人死于口腔癌。早期检测的紧迫性是显而易见的,因为由于临床检查和活检而导致的疾病识别延迟可以阻碍有效的治疗和改善患者的结果。这项研究通过开发能够识别受疾病影响的口腔区域并准确分类各种口腔癌疾病的系统来解决这一关键需求。该研究利用深度学习算法来检测和精确定位口服图像中的受影响区域,并结合了高级特征提取技术,尤其是基于模式的特征。使用创新的蜜蜂脉冲夫妇神经网络(BEEPCNN)算法用于对受影响区域的有效分割。为了进一步提高检测效率,引入了一种新型模糊遗传粒子群卷积神经网络(FGPSOCNN),从而降低了计算复杂性,同时保持了高精度水平。拟议的系统使用从Arthi Scan医院收集的实时MRI图像进行了严格的评估。实验结果令人信服地证明了与现有的口腔癌检测方法相比,FGPSOCNN模型的优越性。1。简介这项综合研究不仅满足了早期口腔癌检测的关键需求,而且还引入了一种创新的方法,可以显着提高效率而不会损害准确性。这项研究对口腔癌诊断的潜在影响是很大的,为全球关键的全球健康挑战提供了有希望的解决方案。关键字:口腔癌,深度学习,蜂鸣声,模糊,粒子群优化,fgpsocnn。