项目“使用光纤电缆进行海上情境意识”(Fibersense)将重点关注并推进分布式的声学传感(DAS)技术。DAS在光纤电缆(FOC)中利用激光诱导的雷利反向散射以检测入射波。可行性研究,包括用于水下测试的孤立控制环境,以及在实际操作环境中,也用于延长的测试期。预期的影响是增加功能寿命和使用成本的减少。
随着物联网 (IoT) 的快速发展和 5G 的引入,传统的硅基电子产品已无法完全满足市场需求,例如由于机械不匹配导致的非平面应用环境。这为使用柔性材料避免物理刚性的柔性电子产品带来了前所未有的可能性。丝素蛋白、纤维素、果胶、壳聚糖和黑色素因其出色的生物相容性和生物降解性而成为下一代柔性电子产品最有吸引力的材料之一。丝素蛋白在生物相容性和生物降解性方面优于它们,并且还具有多种其他理想特性,例如可调节的水溶性、出色的光学透射率、高机械弹性、重量轻和易于加工,而这些特性是其他材料部分或完全不具备的。因此,丝素蛋白已成为生物相容性柔性电子产品最广泛使用的构建块之一,尤其是用于可穿戴和可植入设备。此外,近年来,丝素蛋白的功能特性研究也越来越受到重视,如介电特性、压电特性、高失电子倾向性、环境敏感性等。本文不仅介绍了不同种类丝素蛋白的制备技术以及丝素蛋白作为基础材料应用的最新进展,还介绍了丝素蛋白作为功能元件的最新进展。本文还对丝素蛋白基柔性电子产品面临的挑战和未来发展进行了探讨。
4 应用于语义分割的深度学习技术回顾 - https://arxiv.org/pdf/1704.06857.pdf 5 ImageNet 数据集 - https://www.image-net.org/challenges/LSVRC/
1064/1080nm高功率风冷全光纤连续激光器具有超紧凑、长寿命、低成本和操作简便的特点,广泛应用于激光雷达、生命科学、材料加工、微电子、科学研究等领域。
*** 南卡希亚斯大学 (UCS),Campus Sede,R. Francisco Getúlio Vargas,1130 - Petrópolis,RS **** 圣保罗州立大学 (UNESP) 工程学院材料与技术系、疲劳与航空材料研究组,瓜拉廷格塔,SP,巴西 ✉ 通讯作者:Heitor L. Ornaghi Jr.,ornaghijr.heitor@gmail.com 2020 年 6 月 15 日收到 木质生物质因其成本低、可再生和环境友好而成为生产生物能源的化石燃料的替代品。为了将生物质用作能源,强烈建议了解其热降解行为。这项工作重点研究了巴西木材行业常用的不同树种(湿地松 (PIE)、大桉 (EUG) 和伊塔乌巴 (ITA))的木纤维的热降解。使用 F 检验统计工具,基于最常见的理论数据预测了它们的降解动力学和整体热行为。发现最可能的降解机制是所有测试的木纤维的自催化,具有三个不同的降解步骤。获得的结果与最近在文献中使用其他拟合方法报告的结果一致。发现纤维素是阿伦尼乌斯参数的主要贡献者,而半纤维素是反应级数的主要贡献者。关键词:建模和仿真、木纤维、热分解、热解、模型拟合引言根据欧盟 28 国 (EU-28) 的政策,预计生物能源(包括生物热能、运输用生物燃料和生物电能)将贡献 2021 年可再生能源目标的一半。相比之下,2015 年,生物能源消耗量是 2000 年石油消耗量的两倍多。1 全球使用的森林生物质的一次能源供应量估计约为 56 EJ,这意味着根据世界能源理事会的数据,木质生物质占每年供应的所有能源的 10% 以上,2 每年约 90% 的一次能源来自所有形式的生物质。3 因此,考虑到木材固有的可再生性,木质生物质和木材加工残留物对于满足未来的能源需求至关重要,尽管可持续管理森林资源势在必行。
摘要:玻璃纤维增强复合材料 (FGRC) 具有优异的机械性能、低成本和耐腐蚀性,可用于替代汽车部件制造中的大部分金属。FGRC 在受到恒幅载荷 (CAL) 时会发生疲劳失效。然而,对 FGRC 行为的研究仍然缺乏预测工程和分析工具,这主要是因为对这些材料的行为(包括其在受到变幅载荷 (VAL) 时完整性)的了解不足。因此,本研究旨在调查不同层压板取向的 FGRC 的欠载对疲劳寿命行为的影响。增强材料使用具有 [0/90]° 和 [±45]° 取向的单向玻璃纤维,并选择短切原丝毡来研究周期性欠载的影响。同时使用聚酯树脂作为基质材料。FGRC 复合材料采用手工铺层技术制造,根据 ASTM D3039 进行拉伸试验,根据 ASTM D3479 进行疲劳试验。结果表明,与 CAL 的结果相比,欠载效应会使 FGRC 的疲劳寿命行为从实际值下降 1.4% 到 18%。
摘要:玻璃纤维增强复合材料 (FGRC) 具有优异的机械性能、低成本和耐腐蚀性,可用于替代汽车部件制造中的大部分金属。FGRC 在受到恒幅载荷 (CAL) 时会发生疲劳失效。然而,对 FGRC 行为的研究仍然缺乏预测工程和分析工具,主要是因为对这些材料行为的了解不足,包括它在受到变幅载荷 (VAL) 时的完整性。因此,本研究旨在研究欠载对不同层压板取向的 FGRC 疲劳寿命行为的影响。增强材料使用具有 [0/90]° 和 [±45]° 取向的单向玻璃纤维,并选择短切原丝毡来研究周期性欠载的影响。同时使用聚酯树脂作为基质材料。FGRC 复合材料采用手工铺层技术制造,根据 ASTM D3039 进行拉伸试验,根据 ASTM D3479 进行疲劳试验。结果表明,与 CAL 结果相比,欠载效应使 FGRC 的疲劳寿命行为从实际值下降 1.4% 到 18%。
印后版本。最终版本在此发布:Mejri, M.、Toubal, L.、Cuillière, J. C. 和 François, V. (2017)。短天然纤维增强塑料与尼龙的疲劳寿命和残余强度。复合材料 B 部分:工程(第 110 卷,第 429-441 页)。 https://doi.org/10.1016/j.compositesb.2016.11.036 CC BY-NC-ND 4.0
图 6:以 100 kHz 和 500 mm/s 的速度进行粗铣后,a) 氧化锆、b) 氮化硅、c) 镁橄榄石和 d) PZT 的铣削和表面结果,所有样品的表面质量均光滑;SEM、SE 图像。