小学校长越来越多地承担着对幼儿教师和幼儿的监督、支持和评估的责任。先前的研究表明,校长可能更愿意聘请具有小学认证资格的教师,而不是具有幼儿认证资格的教师,而没有幼儿教育准备的校长可能不会提倡适合其发展的做法。本研究探讨了小学校长对幼儿教育的准备和看法,包括他们对儿童发展的了解和聘用偏好。我们使用州认证数据来了解校长的准备情况,并使用调查数据来探索校长的看法和做法。研究结果表明,大多数校长负责监督幼儿教师和幼儿,但很少有校长拥有幼儿教育认证资格。校长们还表示缺乏对学前班到三年级教育的承诺。结合先前的文献,我们的研究结果表明应修改校长准备要求,以确保所有支持和评估幼儿教师和幼儿的人都能获得相关的课程和经验。
最近的技术进步使得可以收集高维基因组数据以及大量受试者的临床数据。在癌症等慢性疾病的研究中,整合临床和基因组数据以建立对疾病机构的全面了解是非常有趣的。尽管对综合分析进行了广泛的研究,但由于数据类型之间的数据和性质的高度差异性,临床和基因组变量之间的相互作用效应仍然是一个持续的挑战。在本文中,我们提出了一种综合方法,该方法使用单个指数变化的模型对相互作用进行建模,其中基因组特征的影响可以通过临床变量来修饰。我们提出了一种分别选择主要和相互作用效应的惩罚方法。值得注意的是,所提出的方法可以基于COX比例危害模型应用于右汇编的生存结果。我们通过广泛的模拟研究证明了所提出的方法的优势,并为激励癌症基因组研究提供了应用。
推理引擎推理引擎是专家系统的关键组成部分,采用逻辑规则来得出信息或基于知识库做出决策。它将fuzzi输入(通过模糊过程获得)映射到规则库,从而为应用电缆规则生成模糊输出。模糊推理引擎遵循一个结构过程,其中包括多个关键步骤。最初,它通过从知识库中识别相关规则并将输入数据与每个规则中指定的条件进行比较来执行规则匹配。一旦确定了相关规则,发动机就会评估每个规则的真实程度,从而确定输入SATIS符合条件的程度。随后,它通过结合其输出以产生连贯的决策或结论来汇总从匹配规则得出的结论。此过程是迭代的,引擎不断应用规则并更新知识库,直到实现解决方案或不适用其他规则为止。此系统ATIC方法使模糊推理引擎可以处理
摘要:用氧化石墨烯(RGO)进行了整整一系列的二氧化钛纳米复合材料,以溶剂热方法进行了制备。与RGO的TITANIA进行了修改会导致光催化特性。 在600°C的钙化温度下获得最高的光催化性能。 氧缺陷的共振线线宽,随着钙化温度的增加,线性降低,高达600 c,并伴随着养生酶相的平均结晶石大小的伴随。 氧缺陷的综合共振线强度强度在钙化温度下降低,并导致源自氧缺陷的共振线的强度大大增加,因为石墨烯的存在增强了钙的惰性气氛。 通过改变氧缺陷的量,磁性排序系统的发生显着影响光催化过程的性能。与RGO的TITANIA进行了修改会导致光催化特性。在600°C的钙化温度下获得最高的光催化性能。氧缺陷的共振线线宽,随着钙化温度的增加,线性降低,高达600 c,并伴随着养生酶相的平均结晶石大小的伴随。氧缺陷的综合共振线强度强度在钙化温度下降低,并导致源自氧缺陷的共振线的强度大大增加,因为石墨烯的存在增强了钙的惰性气氛。通过改变氧缺陷的量,磁性排序系统的发生显着影响光催化过程的性能。
虽然人工智能(AI)的概念早在60多年前就被提出,但基于AI的技术和应用的快速发展是在2010年代图形处理单元改进之后发生的。1 目前,基于AI的算法可以以相同甚至更高的精度和一致性模拟人类的高阶判断和行为。今天,AI以及物联网(IoT)和大数据等各种其他技术发展引领了人类的第四次工业革命,并已逐步改变了我们的日常生活。购物、日常生活、制造和政府管理的方式都受到这些技术的影响。许多信息技术专家和研究人员投入了大量的时间和金钱来探索AI的新算法和应用,尤其是在医学领域。机器学习(ML)是当今最常用的AI技术。机器学习程序于 1959 年首次推出。2 在机器学习中,数学模型是基于大量训练数据集设计的,这些训练数据集用作训练算法的输入
本发明涉及一种装置,通过该装置,物体通过电子束和影响电子流的静电场或电磁场(电子透镜)以放大的比例成像。根据本发明,多个电子透镜影响电子束,并一起以显微镜或望远镜的方式实现更高的放大率。如前所述,电磁电子透镜和带负电的静电电子透镜相当于光学中的会聚透镜,而带正电的静电电子透镜相当于发散透镜。因此,通过组合这些透镜,可以为电子束模拟光学中利用会聚或发散光束的任何已知装置。此外,还可以以这种方式构建直接使用或反射后使用电子束的显微镜或望远镜。通过以显微镜或望远镜的方式组合多个透镜,可以获得特别高的图像放大倍数。使用电子束具有特别大的优势,
简介 通过分子分析检测和监测兽医病原体是评估风险和减少财务损失的有效工具。动物疾病不仅会造成生产力损失,还会对食品安全构成威胁。因此,对从农场到餐桌的整个食品生产链进行持续评估对于公共健康至关重要。传统的基于培养的方法不太适合检测某些细菌或病毒病原体。相比之下,实时 (RT) PCR 在灵敏度和特异性方面都具有优势,并且可以在快速的周转时间内完成。作为 SAN 集团的一部分,KYLT 开发和生产了广泛的基于 (RT-)qPCR 的检测方法,以简化相关兽医和食品病原体的诊断。ANICON 还提供这些检测作为诊断服务。为了应对有时每天超过 600 个样本的高处理需求,我们开发了一种功能极其强大的自动化解决方案,该解决方案集成了 KYLT 净化器元件设备。在这里,我们介绍了一种全自动解决方案,用于
编辑器:Stephan Stieberger本文为各向异性紧凑型恒星提供了一个新模型,该恒星在teparallear重力的背景下与物理暗物质相结合。该模型基于Bag模型类型的状态(EOS)和Bose-Einstein暗物质密度密度Prfile的方程。衍生的解决方案符合能源条件,因果关系条件以及稳定性因子和绝热指数所需的条件,表明它们在物理上表现良好,代表了身体和稳定的物质辅助。我们还确定表面的最大质量,表面红移和紧凑性参数。有趣的是,所有这些数字都属于规定的范围,支持我们提案的身体生存能力。此外,用于改变模型参数的各种质量对应于五个紧凑,逼真的紧凑对象,包括LMC X-4,她的X-1,4U 1538-52,SAX J1808.4-3658和CEN X-3。我们还说明了能量密度的径向对称pr和非旋转恒星的惯性矩。
广泛的害虫,主要是鳞翅目(毛毛虫),双翅目(蚊子和黑蝇)和鞘翅目(甲虫幼虫)(Sanchis 2011)。bt的特征是在孢子形成过程中生产,内毒素蛋白(称为哭泣的蛋白),这些蛋白会积聚并形成晶体包含体。昆虫必须消耗/摄取这些哭泣的蛋白质,才能感受到其作用,直到昆虫死亡。在摄入后,昆虫中肠内的碱性条件会导致晶体的溶解化,从而将其转化为有毒的核心碎片(Sansinenea 2019)。这些有毒蛋白与位于昆虫中肠上皮细胞上的受体(糖蛋白或糖蛋白)结合(Bravo等人2011)。结合后,毒素会改变其构象,从而使其插入细胞膜并形成阳离子选择通道(Bravo等。2013)。当形成足够的这些通道时,几个阳离子进入了细胞。这会导致细胞内部的渗透不平衡,从而导致中肠上皮完整性的丧失。这使碱性肠道果汁和细菌可以通过中肠地下膜,杀死昆虫。当用作喷雾剂时,这些毒素无效地防止昆虫攻击植物的根或植物的内部部分(Sanahuja等人。2011)。这些局限性引发了人们对开发新的遗传修饰植物和细菌表达哭泣和其他BT-杀虫基因的兴趣,以便提供更有效的毒素递送系统来控制这些昆虫(Azizoglu和Karabörklü2021)。2021; Lazarte等。在生物技术技术(例如基因工程)中的持续进展,具有计算生物学的能力,导致了有关BT的发展和发现。在这种情况下,全球各个研究小组对寻找具有新的抑制活性范围和高水平的毒性毒素的新型哭泣毒素非常感兴趣,这是针对虫害的一种替代品,这种毒性毒性具有更高的抗药性水平(Hou等人 2019; Crickmore等。 2021)。 结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。 2017; Azizoglu等。 2020)。 今天的新一代方法,例如模拟和动态研究,2019; Crickmore等。2021)。结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。2017; Azizoglu等。2020)。今天的新一代方法,例如模拟和动态研究,
