推理引擎推理引擎是专家系统的关键组成部分,采用逻辑规则来得出信息或基于知识库做出决策。它将fuzzi输入(通过模糊过程获得)映射到规则库,从而为应用电缆规则生成模糊输出。模糊推理引擎遵循一个结构过程,其中包括多个关键步骤。最初,它通过从知识库中识别相关规则并将输入数据与每个规则中指定的条件进行比较来执行规则匹配。一旦确定了相关规则,发动机就会评估每个规则的真实程度,从而确定输入SATIS符合条件的程度。随后,它通过结合其输出以产生连贯的决策或结论来汇总从匹配规则得出的结论。此过程是迭代的,引擎不断应用规则并更新知识库,直到实现解决方案或不适用其他规则为止。此系统ATIC方法使模糊推理引擎可以处理
本备忘录的目的是将俄罗斯在该领域的新战略与旧战略进行比较,同时考虑到两者之间的变化和连续性。为此,正文分为五个主要部分。第一部分将该战略置于俄罗斯的战略规划框架中,阐述其功能、时间表以及在当前战时环境下日益增长的重要性。第二部分对这两项战略进行了比较分析,指出了分配给科学技术的角色以及后苏联发展方法的异同。第三部分确定了主要的结构性弱点和威胁,讨论了俄罗斯的战略前景及其在推进科学技术方面面临的挑战。第四部分研究了俄罗斯的战略优先事项,详细介绍了国家科学技术发展的政策原则、主要政策目标、方向、预期成果和资金规定。最后,第五部分总结了研究结果,以反思俄罗斯不断发展的科学技术方法的战略方向和影响。
中国企业和政府参与国际技术标准化进程的日益活跃,引起了西方观察家越来越多的关注,有时也引起了他们的担忧。标准已成为新出现的全球数字技术对抗中的一个重要问题,这在很大程度上是由中国在该领域所宣称的抱负所推动的。然而,数字技术标准领域非常复杂:标准由许多组织制定,涉及多个企业参与者和政府参与者。因此,评估中国的实际影响力需要更细致入微的了解。本报告对该领域进行了初步调查。首先,它回顾了国际标准制定格局的组织架构,并确定了中国寻求产生更大影响力的方式。其次,本文讨论了 5G 标准制定的进程、中国企业的参与以及中国备受关注的“新 IP”计划。最后,本文指出了中国参与度提高可能引发的安全问题,并提出了应对建议。
4.3英寸触摸屏1 200*175*0.7环氧板4 600*175*0.7环氧板2 600*200*0.7环氧板2 610*60*2 60*2 EVA FOAM 2 EVA FOAM 2 180*160*3.5 EVA FOAM FOAM 20 80V400A FUSE FILM FIM film FIM film FIM film 1 80V400A FUSE PLATE BUSE BUSE 1 80V400A FUSE BUSE BUSE 1 80V400A FIES BUSE 1 130*20*20*20*2.3,2。 210*20*2 .3 , 1 hole diameter 8 .2 ,3 small holes Copper busbar 1 305*20*2 .3 ,2 hole diameter 8 .2 Soft copper busbar (P- ) 1 270*20*2 .3 ,2 small holes Soft copper busbar(B- ) 1 370*20*2 .3 ,4 small holes Soft copper busbar(B+) 1 99*28*2 .5 Aluminum row M6螺钉孔15 M6铜螺栓和螺母1带防水垫片的正端子2旋转端子防水垫圈2 160*55*3热硅胶1前板凝胶1前面板1电池电压采集板2橡胶脚4橡胶脚4橡胶脚4显示面板1 6*6*6*6*6*6*6*2 .8 TACK SWITS 3型电池3型电缆3固定电缆3 M 6 M 6 M6 M.6 M.6 M.6 M M.6 M.8 M5*8螺栓8 M6*25螺栓7 M4*6螺栓12 M6*14螺栓6 M5*10螺栓12 M4*8 Boltsa 26 M4*8螺栓16 M3*6螺栓4 M3*10螺栓6螺栓6螺栓6
地球环境是人类的居住,可以生存,运作和发展所需的食物。几个世纪以来,我们都将这两者都视为理所当然。在格拉斯哥2021年气候峰会中对气候变化和粮食安全的全球审查表明,我们不能再将这些视为理所当然,直接有效的干预措施被采取以将全球升高限制在温度下至1.5 O Celsius。如果目前的趋势不快,全球变暖可能很快就会超过2°C的阈值。这将使超过10亿的人处于极端的热压力下;超过99%的珊瑚礁漂白;夏季将海冰融化的融化增加了10次,导致海平面上升6米,植物物种的灭绝和危害饮食多样性和粮食安全的灭绝两倍,尤其是在低收入和中等收入国家以及所有国家 /地区的人口较差的人群中。归因于与气候相关的极端天气事件的频率,持续时间和强度将急剧增加。干旱,缺水,盐度导致粮食产量降低;粮食不安全的人群数量增加了。FAOS的粮食安全和营养报告2021年以来显示,自2014年以来,全球中度或重度粮食不安全的普遍存在由FIES衡量。世界上近三分之一的人(23.7亿)在2020年无法获得足够的食物; 2020年,全球人口中有12%(9.28亿)人口严重不安全。新的预测证实,除非采取有效的步骤来改善食品生产和多样性并解决获得食品的不平等,否则将无法实现零饥饿的可持续发展目标。
未来的机器人被认为是执行各种家庭任务的多功能系统。最大的问题仍然存在,我们如何弥合实施方案差距,同时最大程度地减少物理机器人学习,而物理机器人的学习却很有趣。我们认为,从野外人类视频中学习为机器人操纵任务提供了有希望的解决方案,因为互联网上已经存在大量相关数据。在这项工作中,我们提出了Vidbot,这是一个框架,可以使用仅在野外单核RGB的人类视频中获得的3D负担能力,从而实现了零射击机器人的操作。vidbot利用管道从视频中提取显式表示,即从视频中提取3D手轨迹,将深度基础模型与结构上移动技术结合在一起,以在时间上重新构建时间一致,度量标准的3D 3D负担能力表达表示对实现的体现。我们引入了一种粗到精细的负担能力学习模型,该模型首先识别从像素空间中的粗糙动作,然后通过扩散模型进行了良好的互动轨迹,以粗糙的动作为条件,并由测试时间限制,用于上下文感知到的互动计划,对新的场景和EM- em-
摘要 - 深处增强学习(DRL)是一种强大的机器学习范式,用于生成控制自主系统的代理。但是,DRL代理的“黑匣子”性质限制了其在现实世界中关键应用程序中的部署。为代理行为提供强大保证的一种有前途的方法是使用神经Lyapunov屏障(NLB)证书,该证书是通过系统中学的功能,其属性间接地暗示着代理的行为。但是,基于NLB的证书通常很难学习,甚至更难验证,尤其是对于复杂的系统。在这项工作中,我们提出了一种新颖的方法,用于培训和验证基于NLB的离散时间系统证书。具体来说,我们引入了一种证书组成的技术,该技术通过策略性地设计一系列证书来简化高度复杂系统的验证。当通过神经网络验证引擎共同验证时,这些证书提供了正式的保证,即DRL代理都实现了其目标并避免了不安全的行为。此外,我们引入了一种用于证书过滤的技术,该技术大大简化了生成正式验证的证书的过程。我们通过案例研究证明了我们的方法的优点,该案例研究为DRL控制的航天器提供了安全性和livesice保证。
本文研究了 2014 年至 2018 年期间数字化对 58 个经济体贸易成本的影响。数字连通性的改善可以通过多种渠道降低贸易成本,包括更好地获取信息、降低交易成本、减少商务旅行需求、提高海关和物流效率以及更便捷的沟通。然而,这些积极影响取决于有效的监管,以确保对数字市场的信任以及对数字基础设施、服务和数据的开放访问。我们评估了数字连通性(以人均活跃移动宽带订阅数量为代表)对广义贸易成本的影响,该指标涵盖了所有导致国际贸易比国内贸易更困难或更昂贵的障碍。我们估计,数字连通性提高 10 个百分点,商品和服务贸易成本就会降低约 2%。确保跨境连通性和信息流动的数字贸易监管会放大数字连通性改善带来的贸易成本降低效应。这一结果在数字化交付服务中尤为明显,其中最佳监管下的连接边际效应比中位监管下的连接边际效应高出 80%。
摘要 将能源密集型行业的温室气体 (GHG) 排放减少到净零水平是一项非常雄心勃勃且复杂但仍然可行的挑战,正如最近的研究表明在欧盟层面一样。Material Economics (2019) 的“工业转型 2050”具有特别重要的意义,因为它展示了如何基于三大脱碳战略在欧洲化学品(塑料和氨)、钢铁和水泥行业实现温室气体中和。该研究确定了由此产生的对可再生电力、氢气以及二氧化碳捕获和储存 (CCS) 的总需求。然而,它既没有分析所需基础设施所必需的区域需求模式,也没有分析所需的基础设施本身。在此背景下,本文确定了在上述研究中两个能源和 CCS 最密集的脱碳战略将在现有行业结构中实现的情况下,由此产生的欧洲对电力、氢气和 CCS 的额外需求的区域分布。本文探讨了未来的基础设施需求,并确定和定性评估了欧洲最大的工业集群,即安特卫普、鹿特丹和莱茵-鲁尔三角区的不同基础设施解决方案。此外,还粗略地考察了法国南部和波兰的两个工业区。本文表明,工业绿色转型带来的需求增长将需要大量的广告宣传。
识别物质的相位具有相当大的挑战性,特别是在量子理论领域,因为基态的复杂性似乎随着系统规模的增大而呈指数增长。量子多体系统表现出一系列跨越不同相位的复杂纠缠结构。尽管已经有大量研究探索了量子相变和量子纠缠之间的关系,但在它们之间建立直接、实用的联系仍然是一个关键挑战。在这项工作中,我们提出了一种新颖、高效的量子相变分类器,利用强化学习优化的变分量子电路进行解纠缠。我们证明了该方法对横向场伊辛模型 (TFIM) 和 XXZ 模型中量子相变的有效性。此外,我们观察到该算法能够学习与 TFIM 中的纠缠结构有关的 Kramers-Wannier 对偶。我们的方法不仅可以根据解缠结电路的性能识别相变,而且还具有出色的可扩展性,有助于将其应用于更大、更复杂的量子系统。这项研究揭示了通过量子多体系统中固有的纠缠结构来表征量子相。