• 带有耐环境封装的压力传感器 • 操作范围:压力:300 –1200 hPa。温度:-40 – 85 °C。• 压力传感器精度:± 0.002 hPa(或 ±0.02 m)(高精度模式)。• 相对精度:± 0.06 hPa(或 ±0.5 m)• 绝对精度:± 1 hPa(或 ±8 m)• IPx8 认证:暂时浸泡在 50m 深的水中 1 小时 • 温度精度:± 0.5°C。• 压力温度灵敏度:0.5Pa/K • 测量时间:标准模式(16x)通常为 27.6 ms。最小值:低精度模式为 3.6 ms。• 平均电流消耗:压力测量为 1.7 µA,温度测量为 1.5 µA @1Hz 采样率,待机:0.5 µA。 • 电源电压:VDDIO:1.2 – 3.6 V,VDD:1.7 – 3.6 V。• 操作模式:命令(手动)、后台(自动)和待机。• 校准:使用系数单独校准以进行测量校正。• FIFO:存储最多 32 个压力或温度测量值。• 接口:I2C 和 SPI(均带有可选中断)• 封装尺寸:8 针 PG-VLGA-8-2,2.0 毫米 x 2.5 毫米 x 1.1 毫米。• 符合绿色产品(RoHS)标准
• 带环保封装的压力传感器 • 操作范围:压力:300 –1200 hPa。温度:-40 – 85 °C。• 压力传感器精度:± 0.002 hPa(或 ±0.02 m)(高精度模式)。• 相对精度:± 0.06 hPa(或 ±0.5 m) • 绝对精度:± 1 hPa(或 ±8 m) • IPx8 认证:临时浸泡在 50m 深水中 1 小时 • 温度精度:± 0.5°C。• 压力温度灵敏度:0.5Pa/K • 测量时间:标准模式(16x)通常为 27.6 ms。最小值:低精度模式为 3.6 ms。• 平均电流消耗:压力测量 1.7 µA,温度测量 @1Hz 采样率 1.5 µA,待机:0.5 µA。• 电源电压:VDDIO:1.2 – 3.6 V,VDD:1.7 – 3.6 V。 • 操作模式:命令(手动)、后台(自动)和待机。• 校准:使用系数单独校准以进行测量校正。• FIFO:存储最多 32 个压力或温度测量值。• 接口:I2C 和 SPI(均带有可选中断) • 封装尺寸:8 针 PG-VLGA-8-2,2.0 mm x 2.5 mm x 1.1 mm。• 符合绿色产品 (RoHS)
CMT2300A是一种超低功率,高性能,OOK(G)FSK RF收发器,适用于各种140至1020 MHz无线应用。它是CESTEK NEXTGENRF TM RF产品线的一部分。产品线包含完整的发射机,接收器和收发器。CMT2300A的高积分简化了系统设计中所需的外围材料。+20 dbmtx功率和-121 dbm灵敏度优化了应用程序的性能。它支持各种数据包格式和编解码器方法,以满足各种不同应用程序的需求。In addition, CMT2300A also supports 64-byte Tx/Rx FIFO, GPIO and interrupt configuration, Duty-Cycle operation mode, channel sensing, high-precision RSSI, low-voltage detection, power-on reset, low frequency clock output, manual fast frequency hopping, squelch and etc.功能使应用程序设计更加灵活和差异化。CMT2300A从1.8 V到3.6 V工作。当灵敏度为-121 dBM时,仅消耗8.5 mA电流,超速功率模式可以进一步降低芯片功耗。当输出功率为13 dBm时,仅消耗23MA TX电流。
CMT2300A 是一款超低功耗、高性能、OOK(G)FSK 射频收发器,适用于各种 140 至 1020 MHz 的无线应用。它是 CMOSTEK NextGenRF TM 射频产品线的一部分。该产品线包含完整的发射器、接收器和收发器。CMT2300A 的高集成度简化了系统设计所需的外围材料。高达 +20 dBm 的 Tx 功率和 -121 dBm 的灵敏度优化了应用的性能。它支持多种数据包格式和编解码方式,以满足各种不同应用的需求。此外,CMT2300A 还支持 64 字节 Tx/Rx FIFO、GPIO 和中断配置、Duty-Cycle 操作模式、信道感应、高精度 RSSI、低压检测、上电复位、低频时钟输出、手动快速跳频、静噪等功能。这些功能使应用设计更加灵活和差异化。 CMT2300A 工作电压为 1.8 V 至 3.6 V,在灵敏度为 -121 dBm 时仅消耗 8.5 mA 电流,超低功耗模式可进一步降低芯片功耗,在输出功率为 13 dBm 时仅消耗 23mA Tx 电流。
ACK Acknowledgement ARC Auto Retransmission Count ARD Auto Retransmission Delay CD Carrier Detection CE Chip Enable CRC Cyclic Redundancy Check CSN Chip Select Not DPL Dynamic Payload Length FIFO First-In-First-Out GFSK Gaussian Frequency Shift Keying GHz Gigahertz LNA Low Noise Amplifier IRQ Interrupt Request ISM Industrial-Scientific-Medical LSB Least Significant Bit MAX_RT Maximum Retransmit Mbps Megabit per second MCU Microcontroller Unit MHz Megahertz MISO Master In Slave Out MOSI Master Out Slave In MSB Most Significant Bit PA Power Amplifier PID Packet Identity Bits PLD Payload PRX Primary RX PTX Primary TX PWD_DWN Power Down PWD_UP Power Up RF_CH Radio Frequency Channel RSSI Received Signal Strength Indicator RX Receive RX_DR Receive Data Ready SCK SPI时钟SPI SPI串行外围接口TDD时间划分双面TX传输TX_DS发送数据发送XTAL CRYSTAL
• 遵守先进先出/最先进先出原则,避免不必要的浪费。 • 始终确保疫苗保存在规定的温度限制内 • 接种结束后,必须丢弃装有未使用剂量的疫苗瓶。 • 切勿将用于接种疫苗的已打开的多剂量疫苗瓶运输或放回冷链 - 应将其丢弃。 • 药品或受管制物质只能由根据《国家环境管理:废物法》(2008 年)(2008 年第 59 号法案)授权销毁药品或药品废物的废物处理设施销毁。 • 不得将 COVID 19 疫苗丢弃到市政污水系统或运往垃圾填埋场或垃圾处理场的垃圾中。 • 所有疫苗和属于附表 0-4 的任何其他药物都必须在《国家环境管理:废物法》(2008 年)(2008 年第 59 号法案)授权销毁药物或药物废物的废物处理设施中销毁,并且此类销毁必须由南非卫生产品监管局 (SAHPRA) 认证。 • 所有过期、废弃、无法使用和 COVID 19 疫苗都必须隔离在冰箱/冰柜/冷藏室的安全指定区域。 • 疫苗处理必须在主管药剂师和/或疫苗接种点经理批准后进行。
抽象盲量计算(BQC)可以确保具有有限量子能力的客户端安全地将计算任务委派给远程量子服务器。为了抵制攻击忽略BQC协议中的身份身份验证,有必要保证多方BQC网络中客户端和服务器的合法性。因此,我们提出了一个多方BQC协议,该协议涉及三个阶段,以分发共享密钥和身份验证身份。首先,通过使用测量设备独立量子密钥分布(MDI-QKD)的优势,注册客户端和分配的服务器可以在注册阶段安全共享初始密钥。其次,在半冬天的认证权限(CA)的帮助下,相互身份认证阶段同时通过共享密钥实现了双方的双向身份验证。第三,在盲量计算阶段,注册客户端可以通过测量分配的服务器而不是准备Qubits来完成其计算任务。与第一个(FIFO)原理结合使用,可以并行处理客户的身份验证和盲量计算。该协议也可以应用于具有资源状态通用性的其他多方BQC协议中。与其他BQC协议相比,保证具有身份认证协议的可靠性,并且在实际实验中将显着反映效率。
规格建议的运行条件最小标称最大限制探测器通道数量1-16-检测器输入电压0MV -180MV至-550MV -1200MV -1200MV -1200MV脉冲宽度0.48NS 6NS 6NS 6NS至12NS至12NS 34NS-触发边缘边缘掉落 - 可触发边缘掉落 - 可触发的Edgromable -able -able -able -able -able -ablebable thosmable thosmable -000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000。 -3000mV 3300mV 4000mV Input Impedance 50Ω Sync Inputs - GPS Input voltage 0mV 1000mV - 3000mV 3300mV 4000mV Input Impedance 50Ω Time to digital Converter (TDC) Minimum time bin width Refer to Mode Parameters table Timing precision 3ps 4ps Timing precision (rms) 2.12ps 2.8ps Adjustable delay range - Sync TBD Count rate Refer to Mode Parameters table Sync Rate TBD Histogrammer Count depth 16 bit Maximum number of bins 65536 Acquisition time - Oscillator sync 1ms TBD Acquisition time - GPS Sync 1ms Infinite Temperature Range Operating 0 o C - +50 o C 70 o C Storage -40 o C - +85 o C 100 o C 64-bit Time Tagging Channel Number Bits [60:63] (4 bits, 16 values) Sync event count/GPS UTC Bits [32:59] (28 bits, 4,294,967,296 values) Time Offset from sync event Bits [0:31] (32 bits, 268,435,456 values) 250fs resolution GPS Time Tagging GPS tagging allows time correlation of tags for experiments & communication systems in different physical locations.标签存储在FIFO内存中,准备在硬件接口上交付,以便在多个通道上的高速爆发收集。FIFO DEPTH 65536标签。GUI和软件模块化软件方法:模块化软件系统。用于直方图生成,巧合计数和定制模块的模块可用于特定客户应用程序灵活性Python&LabView界面,可为客户自己的接口提供。具有以太网选项的网络,可以将仪器设置为多播服务器,从而允许通过订阅多播组的多个软件连接到单个仪器。适用于许多客户需要从组检测器来源访问标签信息的大型实验室。简单的仪器接口:仪器管理接口,用于选择同步源,设置TAC模式并设置标签交付过程。主机界面USB 3.0链接链接速度5GB/s,最大持续标签率= 80 mtag/sec以太网链路链接速度1GB/s,最大持续标签率= 15.625 mtag/sec操作系统支持OS:使用交叉平台GUI接口机械宽度260mm Depth 260mm Divors Sma Andope sma sma connects os:windows/linux sma connects sma
能够分析算法的性能 能够为指定的应用程序选择合适的数据结构和算法设计方法 能够理解数据结构的选择和算法设计方法如何影响程序的性能 UNIT - I 简介:算法、性能分析-空间复杂度、时间复杂度、渐近符号-大 oh 符号、欧米茄符号、西塔符号和小 oh 符号。 分而治之:一般方法,应用-二分查找、快速排序、归并排序、施特拉森矩阵乘法。 UNIT - II 不相交集:不相交集合运算、联合和查找算法 回溯:一般方法、应用、n 皇后问题、子集和问题、图着色 UNIT - III 动态规划:一般方法,应用-最佳二叉搜索树、0/1 背包问题、所有对最短路径问题、旅行商问题、可靠性设计。第四单元贪婪法:通用方法,应用-有截止期限的工作排序,背包问题,最小成本生成树,单源最短路径问题。第五单元分支定界:通用方法,应用-旅行商问题,0/1背包问题-LC分支定界解决方案,FIFO分支定界解决方案。NP-Hard和NP-Complete问题:基本概念,非确定性算法,NP-Hard和NP-Complete类,Cook定理。教科书:
能够分析算法的性能 能够为指定的应用程序选择合适的数据结构和算法设计方法 能够理解数据结构的选择和算法设计方法如何影响程序的性能 UNIT - I 简介:算法、性能分析-空间复杂度、时间复杂度、渐近符号-大 oh 符号、欧米茄符号、西塔符号和小 oh 符号。 分而治之:一般方法,应用-二分查找、快速排序、归并排序、施特拉森矩阵乘法。 UNIT - II 不相交集:不相交集合运算、联合和查找算法 回溯:一般方法、应用、n 皇后问题、子集和问题、图着色 UNIT - III 动态规划:一般方法,应用-最佳二叉搜索树、0/1 背包问题、所有对最短路径问题、旅行商问题、可靠性设计。第四单元贪婪法:通用方法,应用-有截止期限的工作排序,背包问题,最小成本生成树,单源最短路径问题。第五单元分支定界:通用方法,应用-旅行商问题,0/1背包问题-LC分支定界解决方案,FIFO分支定界解决方案。NP-Hard和NP-Complete问题:基本概念,非确定性算法,NP-Hard和NP-Complete类,Cook定理。教科书: