磷营养很长时间以来一直在影响植物的花卉转变,但潜在的机械主义尚不清楚。拟南芥磷酸转运蛋白磷酸盐1(PHO1)在从根到芽的磷酸转移中起关键作用,但是它是否以及如何调节花卉转变是未知的。在这里,我们表明PHO1的敲除突变延迟在长期和短期条件下开花。Pho1突变体的晚开花可以通过玫瑰花结或射击顶点的Pi补充来部分挽救。嫁接测定法表明,PHO1突变体的晚开花是磷酸盐从根到芽的磷酸易位受损的结果。SPX1和SPX2的基因敲除突变,这是两个磷酸盐饥饿反应的两个负调节剂,部分挽救了PHO1突变体的晚期流动。pho1在开花时间调节中对Pho2(Pho2的负调节剂)表示同义。损失PHO1会抑制某些花卉激活剂的表达,包括编码佛罗里语的FT,并在芽中诱导某些花卉阻遏物的表达。遗传分析表明,至少对于PHO1突变体的晚开花,至少部分缩进的茉莉酸信号传导。此外,我们发现pho1的水稻pho1; 2,Pho1的同源物在花卉过渡中起着类似的作用。这些结果表明PHO1整合了磷营养和开花时间,并且可以用作调节植物中磷营养介导的开花时间的潜在目标。
在冬季好的冬季,在2020季节记录的Callitrophila开花植物的总数约为183个开花植物,其中大多数(> 90%)出现在一个地点(G. Robertson,Litt。2021年2月; dcceew undubl。数据)。在2023年冬季更干燥之后,只记录了14种开花植物(DCCEEW未公开数据; L. Carrigan未公开数据; G.法国不公开数据)。很难估算C. claterrophila的当前总人口大小,因为一个季节在一个季节中观察到的开花不一定会死亡。有些人可能仍然处于休眠状态,这是一种在具有相似生活史的兰花中观察到的常见生态策略(Dixon and Tremblay 2009)。紧急数量主要是由于雨水和土壤水分而波动,地下人口可能能够持续几年而不会出现(Dixon and Tremblay 2009)。但是,鉴于2020年的季节被认为是一年的开花条件,人口规模可能不超过250。6。鲜为人知的是Caladenia Callitrophila的生物学的具体细节
摘要。Calamansi是班古鲁市的主要园艺商品。这项研究旨在确定植物剂量和局部微生物之间的最佳组合,以促进卡拉曼西的生长和开花。本研究使用了阶乘完整的随机设计(CRD)。局部微生物(M)的第一个因素由两个级别组成,即没有给出(M0)和局部微生物(M1)。GRADMORE(D)剂量的第二个因子由四个级别组成,即0 g / L(D0),1 g / L(D1),2 g / L(D2),3 g / L(D3)。结果表明,局部微生物的治疗与Growmore的剂量之间的结合没有差异。在一个因素中,生长剂量对clamansi的盆栽的生长和开花有无形的影响。同样,局部微生物的一个因素对calamansi盆栽的生长和开花产生了不真实的影响。
digitalis purpurea(foxglove)是一种广泛分布的装饰植物,也是生物医学复合地高辛的生产商。在这里,我们提出了一个长期读取测序的基于测序的基因组序列,该基因组序列和基因模型的相应预测。高组装连续性由4.3 Mbp的N50表示,并且发现约96%的完整BUSCO基因支持完整性。这种基因组资源为对D. purpurea的花色素沉着的深入研究铺平了道路。鉴定了花色苷生物合成的结构基因和相应的转录调节剂。 红色和白色开花植物的比较显示,白色开花植物中花青素合酶基因的插入很大,很可能使该基因具有非功能性,并且可以解释花青素色素沉着的丧失。 此外,花青素生物合成激活剂MYB5在白色开花植物中显示了18 bp的缺失,导致蛋白质中6种氨基酸损失。 此外,我们发现在DPTFL1/CEN基因中插入大量插入,负责大末端花的发展。鉴定了花色苷生物合成的结构基因和相应的转录调节剂。红色和白色开花植物的比较显示,白色开花植物中花青素合酶基因的插入很大,很可能使该基因具有非功能性,并且可以解释花青素色素沉着的丧失。此外,花青素生物合成激活剂MYB5在白色开花植物中显示了18 bp的缺失,导致蛋白质中6种氨基酸损失。此外,我们发现在DPTFL1/CEN基因中插入大量插入,负责大末端花的发展。
这项研究是在2015年夏季在尼泊尔Dipayal的区域农业研究站进行的,以估算使用低地灌溉水稻的26个先进基因型的基因型和表型可变性,遗传力,遗传性,遗传进步和谷物产量和相关性状相关性。差异分析表明,天数与开花,成熟度,植物高度,圆锥花序长,千粒重量和谷物产量存在显着差异。估计开花的天数(0.88),成熟度(0.79),千粒重量(0.48)和植物高度(0.43)表明这些特征在高遗传控制下。观察到谷物产量(24.87%),谷物/圆锥花序数量(22.45%),圆锥花序数量/m 2(20.95%)和稻草产量(20.75%)的高表型变化(22.45%),而谷物产率的产量(12.02%)(12.02%)(12.02%)以及剩余的特征显示较低的基因型变量(<10%)。与基因型变异系数相比,估计的高表型变异系数显示出对性状表达的环境影响。谷物的产量(11.98)和开花天(10.32)显示出培养基,其余特征播下了低基因型前进,为平均值的百分比。高至低遗传力,具有中等至低基因型的进步,因为平均值的百分比表明这些特征受非添加剂基因的控制,因此直接选择无益。通过创建变异和选择,建议对这些基因型的产量潜力和产量特征的进一步提高。圆锥花序长度(r = 0.230),开花天(r = 0.247),有效的分ers(r = 0.488)和稻草产量(r = 0.846)表现出与谷物产量的显着正相关,表明如果选择有利于这些产率分量的选择,则可以提高产量。
绣球花属属于绣球花科,属于开花植物山茱萸目,该目早期在菊科中分化,包括几种常用的观赏植物。其中,大叶绣球是苗圃贸易中最有价值的物种之一,但这种作物或密切相关的菊科物种的基因组资源很少。绣球花品种“Veitchii”和“Endless Summer”的两个高质量单倍型解析参考基因组[最高品质为 2.22 千兆碱基对 (Gb)、396 个重叠群、N50 22.8 兆碱基对 (Mb)]被组装并支架到预期的 18 条假染色体中。利用新开发的高质量参考基因组以及其他相关开花植物的高质量基因组,发现核数据支持菊科植物演化支中的单个分歧点,其中山茱萸目和杜鹃花目均与真菊科植物分化。使用 F 1 杂交种群进行基因作图证明了连锁作图与新基因组资源相结合的强大功能,可以识别位于 4 号染色体上的花序形状基因 CYP78A5 和位于 17 号染色体上的导致重花的新基因 BAM3。本研究开发的资源不仅有助于加速绣球花的遗传改良,还有助于了解最大的开花植物群——菊科植物。
20。定义gibberellins(GA)。21。描述吉布雷素对植物生长的影响。22。列出了Gibberellins作为植物生长调节剂的主要用途,并确定使用的农作物。(细胞伸长,细胞分裂,克服休眠,克服或破坏芽休眠,增加或减少果实集,影响果实的形状,果实成熟,果树上的开花延迟,刺激两年中的开花和刺激,延迟衰老,延迟衰老)23。描述了吉布林蛋白如何刺激植物克服休眠状态。24。认识到,gibberellins的100多种化学结构超过100种,但仅在商业上使用了少数化学结构。25。比较/对比度GA 3和GA 4 GA 7。26。识别主要的gibberellins。27。识别主要作物和GA 4 GA 7的使用。28。确定Ga 3在柑橘中的主要用途。
*相应的电子邮件:saadedan91@gmail.com摘要在2020-2021季期间,在Al-Alam区\ Sallahiddin省的农业领域进行了一个现场实验,以研究由于γ射线的产生亚麻遗传学作物的遗传变异。The study factors included four levels of gamma rays, which were 0, 9, 18 and 27 Gy and six genotypes of the flax crop, which were Sakha1, Sakha2, Sakha3, Giza8, Syrian and Poloni, use a completely randomized block design with split plot system and was used three replications, traits studied were Duration to 50% flowering and Duration of days to maturity, Plant height, Leaves ratio,植物分支的数量,种子数量,1000种种子重量,植物产量和种子产量。The results of the study indicated that gamma rays had a significant effect on all studied traits, comparison treatment gave a lower value from the number of days to flowering 50% of plants and days to maturity (110.24) and (155.05) days, respectively, while the plants irradiated with the level 9 Gy recorded a significant superiority in the percentage of leaves (21.46) %, while the non-irradiated plants outperformed in其余的研究特征。基因型SAKHA1在营养分支数量(3.63)分支-1,每植物的胶囊数量(54.35)胶囊植物-1,单个植物产量(2.22)GM植物-1和种子产量(433.63)kg ha -1中给出了最高平均平均值。至于相互作用,它通过非辐照的Sakha1基因型具有重要意义,该基因型具有最高的每植物胶囊数量的特征,人均种子数量,个体植物产量和总种子产量(62.22)胶囊植物-1 9.96种子胶囊-1 9.96种子胶囊-1(2.89)g植物-1(2.89)g植物-1(578.60)。