对方差的分析显示,除了二级分支的数量,中间叶片的叶柄长度,平均胶囊宽度和平均胶囊厚度外,所研究的22个字符的种质之间存在显着差异。这表明大多数研究字符的种质中存在许多遗传变异。高遗传力与植物高度,初级分支,上叶的长度,开花的天数,天数到50%开花的天数,豆荚轴承区,每株植物的种子产量和细菌斑点反应记录了高遗传进展,表明这些特征是由添加基因效应控制的,从而有效地选择了这些字符的特征,可以进一步繁殖。这项研究中获得的结果将通过繁殖和保存芝麻遗传资源来促进气候友好的芝麻品种的改善。
Mirzakamol Ayubov是乌兹别克斯坦共和国科学院基因组学与生物信息学中心的副主任。他的研究兴趣包括棉花基因组学,转基因组学,生物信息学和标记辅助选择。Ayubov博士获得了博士学位。来自乌兹别克斯坦共和国科学院基因组学和生物信息学中心的基因组学,蛋白质组学和生物信息学。 他的主要科学兴趣是使用RNA干扰技术确定植物色素和Eskimo-1基因的功能。 通过淘汰这些基因,他能够生产几种具有早期开花,优质纤维质量和较高产量的棉线,以及许多耐药胁迫耐受性线。 他还为标记辅助选择计划做出了贡献,该计划有助于获得许多MAS品种。 Ayubov博士在国际期刊上发表了几篇科学论文。 他在2023年获得ICRA-ASIA年轻科学家创新2023。Ayubov博士获得了博士学位。来自乌兹别克斯坦共和国科学院基因组学和生物信息学中心的基因组学,蛋白质组学和生物信息学。他的主要科学兴趣是使用RNA干扰技术确定植物色素和Eskimo-1基因的功能。通过淘汰这些基因,他能够生产几种具有早期开花,优质纤维质量和较高产量的棉线,以及许多耐药胁迫耐受性线。他还为标记辅助选择计划做出了贡献,该计划有助于获得许多MAS品种。Ayubov博士在国际期刊上发表了几篇科学论文。他在2023年获得ICRA-ASIA年轻科学家创新2023。
它是如何运作的?珍稀植物监测计划于 2017 年启动。如果有人向中心提交一份珍稀植物的临时记录,中心就会询问他们是否愿意每年在植物开花期去拜访一次该珍稀植物种群,并统计植物总数。中心会提交有关珍稀植物位置、数量以及其他地点信息的数据。该项目已与国家公园和野生动物管理局 (NPWS) 讨论并达成一致。它以 2016 年维管植物红色名录为框架,主要侧重于监测易危、近危和稀有无危物种,以期为未来的红色名录贡献这些物种的高质量数据。2017 年,志愿者监测了 25 个分类单元的 37 个种群。到 2024 年,这一数字将增至 123 个分类单元的 396 个种群。
研讨会计划每天,参与者将参加由受邀专家和WSSC员工主持的研讨会,为一系列关键主题提供深入的潜水。研讨会主题将涵盖广泛的种子科学和技术,包括开花,胚胎生成和种子表达的基因。其他主题将包括休眠,种子质量,应力耐受性,寿命,发芽标记和种子增强技术。与会者还将探索高级主题,例如种子成熟,种子健康,活力,底漆,涂层和种子微生物组。此外,会议将集中在诸如种子质量控制和基因数据库挖掘等裁缝领域,以确保对该领域的最新进步有全面的了解。通过参加我们的计划,您将受益于出色的培训和资源,使您能够对全球种子行业产生有意义的影响。
•授粉 - 蜜蜂,蝴蝶和气管等昆虫是曼彻斯特公园,花园,分配和食品种植项目中植物的重要授粉媒介。他们确保开花植物的繁殖,这些植物支持粮食生产并丰富绿色空间•土壤健康 - 造成甲虫和蚂蚁等有机物分解有机物,富集土壤并改善其生育能力 - 在曼彻斯特至关重要,曼彻斯特至关重要,曼彻斯特具有复杂的土壤和后工业的景观。这一过程增强了城市花园和社区分配中植物的生长,从而支持城市可持续的生活。•食物链支持 - 昆虫构成了许多食物链的基础,这有助于该市的生物多样性。昆虫种群的下降破坏了这些生态系统,影响居民在我们的公园,河谷,花园和分配中所享有的野生动植物。•文化和教育价值 - 昆虫为教育和对生物多样性和可持续性的认识提供了机会。昆虫友好的花园计划
最近,人们对使用旋转和生物生物多样性的旋转和生物生物放牧系统的潜力越来越兴趣。围场放牧系统最初是为了提高牲畜系统的生产率而开发的,通常将草利用从典型的C.50%C.50%的固定库存系统中提高到65-80%。这是通过旋转高密度的牲畜来实现的(例如15-30 lu/ha)周围的大小高达2-3公顷,通常将每个围场2-3天放牧,休息时间至少为2-3周(冬季更长),然后返回同一围场。该系统受草高的约束,放牧和休息时间进行调整以匹配草的生长。这种旋转放牧形式主要是针对提高牲畜生产率的这种旋转放牧形式,不太可能是保护放牧的理想选择,因为它倾向于减少种植的多样性,而放牧的休息时间不太可能足够长,足以为开花植物或近巢鸟提供所需的益处。
背景:花的结构显著影响被子植物与环境的相互作用,尤其是因为它决定了植物授粉的物种集合。花器官特征如何发展的遗传基础在很大程度上已被阐明:主要有三类花同源基因,称为 A 类、B 类和 C 类基因,它们以组合方式决定在花中形成哪些器官 [1, 2]。根据所谓的花发育 ABC 模型,仅 A 类基因的表达会导致萼片的发育,A 类和 B 类基因的共同表达会导致花瓣的形成,B 类和 C 类基因的共同表达决定雄蕊,而 C 类基因的单独表达则会产生心皮。所有 ABC 基因都编码转录因子。然而,编码微小 RNA (miRNA) 的基因也已被证明对发育具有重要意义 [有关综述,请参阅参考文献 3]。ABC 基因和 miRNA 甚至可以一起起作用。已发现一种 miRNA,即 miR5179,可以调控 B 类基因的一个分支的成员,即兰花中的 DEF 样基因 [4]。这种 miRNA 非常引人注目。虽然编码 miRNA 的基因(miR 基因)通常具有较高的出生和死亡率,因此在进化时间尺度上仅存在很短的时间,但很少有基因获得重要的发育功能,因此在广泛的分类群中保存了数亿年。然而,miR5179 并不符合这两种模式。我们实验室对基因组、转录组和 miRNome 数据的分析表明,miR5179 可能起源于大约 2 亿年前的开花植物茎群,并在多个植物谱系中得到保存。因此,它出现在许多现存物种中,如猕猴桃(猕猴桃)、柑橘(橙子)、野芭蕉(香蕉)和水稻(水稻),表明 miR5179 具有重要作用。然而,相比之下,miR5179 在许多其他开花植物谱系中已经独立消失,例如在 Vitales、Malvales 和 Pandanales 目中,这表明 miR5179 在这些情况下是可有可无的。因此,miR5179 提出了一个有趣的难题:它很古老,但并未普遍保存。为什么它在某些植物中具有重要的功能,但在其他植物中却可有可无?
多变的气候条件和持续的财务压力是 2023/24 年澳大利亚葡萄和葡萄酒行业的标志。继 2023 年产量极低(132 万吨)之后,2024 年的总产量略有增加。澳大利亚葡萄酒局的全国葡萄收获调查估计,澳大利亚酿酒葡萄的压榨量为 143 万吨,比 2023 年高出 9%,但仍比 10 年平均值 173 万吨低 18%。这是过去五年中第三个低于长期平均水平的年份。天气相关因素导致了葡萄产量低,包括洪水、冰雹、霜冻、影响开花的强风和热浪等事件。此外,持续的经济因素(包括葡萄价格低、全球葡萄酒需求减少以及大量的葡萄酒库存)也产生了重大影响,许多情况下未签约的水果无法出售,一些生产商决定让葡萄园休耕或完全移除葡萄藤。
专题文章 新的夜灯地图开辟了可能的实时应用 31 增强 NASA 的可发现性 NASA 的 CYGNSS 卫星星座地球科学数据通过数字方式开始公共数据发布 33 对象标识符 (DOI) 4 AIRS:15 年的观察空气中的事物 34 四月份的宣传活动使公众对常规专题的认识不断提高 NASA 的科学活动 9 新闻中的 NASA 地球科学 36 会议摘要 NASA 科学任务理事会 – 科学教育和公共宣传更新 38 NASA-世界银行全球科学日历研讨会 39 降水测量应用 13 北极-北方变化实验提醒:要查看彩色新闻稿图像,请访问 (ABoVE) 科学团队摘要 17 eospso.nasa.gov/earth-observer-archive。Landsat 科学总结团队:2017 年冬季会议 21 2016 年 HyspIRI 研讨会总结 26