摘要 - 拉达值允许在复杂的环境中对旋转的FMCW雷达传感器进行准确的建模和模拟,包括对雷达波的反射,折射和散射的模拟。我们的软件能够实时处理大量对象和材料,使其适合在各种移动机器人应用程序中使用。我们通过一系列实验证明了雷达的有效性,并表明它可以在各种环境中更准确地再现FMCW雷达传感器的行为,与基于射线铸造的激光雷达样模拟相比,这些模拟器通常用于自主驱动器(例如Carla)。我们的实验还可以作为研究人员评估自己的雷达模拟的宝贵参考点。通过使用雷达,开发人员可以显着减少与原型和测试FMCW基于基于FMCW的算法相关的时间和成本。我们还提供了一个凉亭插件,该插件使移动机器人社区可以访问我们的工作。
手持通信器 (MRL-HHC) 用于对任意数量的 Pegasus 发射器进行本地编程。它通过飞线连接到 Pegasus 上的编程插座,并可以访问完整的编程菜单。使用简单的菜单结构浏览菜单,设置通常只需几分钟即可完成。如果需要针对特别困难的应用进行一些调整,则可以访问一套工程参数。
激光雷达(光检测和测距)技术有可能彻底改变自动化系统与其环境和用户的交互方式。当今行业中的大多数激光雷达系统都依赖于脉冲(或“飞行时间”)激光雷达,而这种激光雷达在深度分辨率方面已达到极限。相干激光雷达方案,例如调频连续波 (FMCW) 激光雷达,在实现高深度分辨率方面具有显著优势,但通常过于复杂、昂贵和/或体积太大,无法在消费行业中实施。FMCW 及其近亲扫频源光学相干断层扫描 (SS-OCT) 通常针对计量应用或医疗诊断,这些系统的成本很容易超过 30,000 美元。在本论文中,我介绍了我在芯片级光学和电子元件集成方面的工作,以应用于相干激光雷达技术。首先,我将总结将通常体积庞大的 FMCW 激光雷达控制系统集成到光电芯片堆栈上的工作。芯片堆栈由一个 SOI 硅光子芯片和一个标准 CMOS 芯片组成。该芯片用于成像系统,可在 30 厘米的距离内生成深度精度低至 10 微米的 3D 图像。其次,我将总结我在实施和分析一种新的 FMCW 激光雷达信号后处理方法方面的工作,称为“多同步重采样”(MK 重采样)。这涉及非线性信号处理方案下激光相位噪声的蒙特卡罗研究,因此我将展示随机模拟和实验结果,以证明新重采样方法的优势。QS 重采样有可能提高相干成像系统的采集率、精度、信噪比和动态深度范围。
• FMCW 收发器 – 集成 PLL、发射器、接收器、基带和 ADC – 76GHz 至 81GHz 覆盖范围,可用带宽为 5GHz – 四个接收通道 – 三个发射通道 – 基于小数 N 分频 PLL 的超精确线性调频引擎 – TX 功率:13dBm – RX 噪声系数:13dB – 1MHz 时的相位噪声:• –96dBc/Hz(76GHz 至 77GHz)• –94dBc/Hz(77GHz 至 81GHz)• 内置校准和自检 – 内置固件 (ROM) – 跨工艺和温度的自校准系统• 主机接口 – 通过 SPI 或 I2C 接口与外部处理器进行控制接口 – 通过 MIPI D-PHY 和 CSI2 v1.1 与外部处理器进行数据接口 – 用于故障报告的中断• 符合功能安全标准 – 专为功能安全应用而开发 – 提供文档以帮助 ISO 26262 功能安全系统设计达到 ASIL-D – 硬件完整性达到 ASIL-B – 安全相关认证 • 经 TUV SUD 认证,达到 ISO 26262 ASIL B 级
为主动和被动的光学感官技术提供了互补的方式。此外,现有的雷达传感器具有很高的成本效益,并且在运行在户外操作的机器人和车辆中。我们介绍了雷达场 - 一种为活动雷达成像器设计的神经场景重建方法。我们的方法将具有隐式神经几何形状和反射模型的显式,物理知识的传感器模型团结起来,以直接合成原始雷达测量并提取场景占用率。所提出的方法不依赖卷渲染。相反,我们在傅立叶频率空间中学习字段,并通过原始雷达数据监督。我们验证了我们在各种室外场景中的有效性,包括带有密集车辆和基础设施的城市场景以及MM波长感应的恶劣天气情况。
2 Kasetsart大学工程学院,Kasetsart University,Ngamwongwan Road 50,Ladyao,Chatuchak,Chatuchak,Bangkok 10900,泰国电子邮件:a,* tiwat.pon@nectec.or.th(通讯作者) la-or.kovavisaruch@nectec.or.th,e kamol.kaemarungsi@nectec.or.th摘要。 频率调制连续波(FMCW)雷达前端模块是NECTEC NSTDA的实验室原型开发的。 通过在室外环境中铝板的反射测试来验证所提出的原型的性能。 在前端原型和铝板之间的距离的每20米处测量频谱分析仪的频域数据,直到达到200米的最大距离为止。 提出了在不同反射铝板范围内的BEAT频率的计算。 测量距离和计算的距离之间的最大误差不超过5.02%。 分析了反射物体的不同雷达横截面(RC)的影响为0.3、0.8和1.5 m 2板面积。 获得了0.66%的每个平方仪单位面积的不同接收功率比的低值,以证明反射功率水平在测试的对象的不同大小上的一致性。 关键字:雷达,FMCW,节拍频率,RCS。2 Kasetsart大学工程学院,Kasetsart University,Ngamwongwan Road 50,Ladyao,Chatuchak,Chatuchak,Bangkok 10900,泰国电子邮件:a,* tiwat.pon@nectec.or.th(通讯作者) la-or.kovavisaruch@nectec.or.th,e kamol.kaemarungsi@nectec.or.th摘要。频率调制连续波(FMCW)雷达前端模块是NECTEC NSTDA的实验室原型开发的。通过在室外环境中铝板的反射测试来验证所提出的原型的性能。在前端原型和铝板之间的距离的每20米处测量频谱分析仪的频域数据,直到达到200米的最大距离为止。提出了在不同反射铝板范围内的BEAT频率的计算。测量距离和计算的距离之间的最大误差不超过5.02%。分析了反射物体的不同雷达横截面(RC)的影响为0.3、0.8和1.5 m 2板面积。获得了0.66%的每个平方仪单位面积的不同接收功率比的低值,以证明反射功率水平在测试的对象的不同大小上的一致性。关键字:雷达,FMCW,节拍频率,RCS。
摘要:风力涡轮机叶片 (WTB) 是由复合多层材料结构组成的关键子系统。WTB 检查是一个复杂且劳动密集型的过程,其失败会给资产所有者带来巨大的能源和经济损失。在本文中,我们提出了一种用于叶片复合材料的新型无损评估方法,该方法采用调频连续波 (FMCW) 雷达、机器人和机器学习 (ML) 分析。我们表明,使用 FMCW 光栅扫描数据,我们的 ML 算法(SVM、BP、决策树和朴素贝叶斯)可以区分不同类型的复合材料,准确率超过 97.5%。SVM 算法的性能最佳,准确率为 94.3%。此外,所提出的方法还可以获得检测表面缺陷的可靠结果:层间孔隙率,总体准确率为 80%。特别是,SVM 分类器的最高准确率达到 92.5% 至 98.9%。我们还展示了检测复合材料 WT 结构中 1 毫米差异的气孔的能力,使用 SVM 的准确率为 94.1%,使用 Naïve Bayes 的准确率为 84.5%。最后,我们创建了物理复合材料样品的数字孪生,以支持 FMCW 数据相对于复合材料样品特性的集成和定性分析。所提出的方法探索了一种用于复合材料非接触表面和地下的新型传感方式,并为开发替代的、更具成本效益的检测方法提供了见解
摘要本文考虑使用频率调制的连续波(FMCW)信号和多输入多输出(MIMO)虚拟阵列之间的汽车雷达之间的相互减轻。在第一次,我们得出了一个空间域干扰信号模型,不仅说明了时间频的不连贯性(例如,不同的fmcw参数和时间O效应),而且还解释了较慢的时间模拟参数和时间opimo代码,并且阵列conerence conscorence Incoherence coherence coherence confuration confuration diefiration die-er-Er-Er-Ectects rand condence rances rances rad rack rad and conding rad racked and Accessinging Accessinging actinging brading actinging actinging actinging actinging rockinging brading brading。使用标准MIMO-FMCW对象信号模型使用显式干扰信号模型,我们将干扰缓解措施变成不一致的MIMO-FMCW干扰下的空间域对象检测。通过在传输和接收转向矢量空间时利用派生干扰模型的结构特性,我们通过波束成形优化得出检测器,以实现良好的检测性能,并进一步提出了该检测器的自适应版本,以增强其实际适用性。使用分析闭合形式表达式,合成级仿真和系统级模拟确认我们对所选基线方法的效果的效果。
文献中用于微无人机检测的大多数雷达系统基于频率调制连续波形(FMCW)雷达[8-11],并且使用Pulse-Doppler(PD)雷达在系统上的作品很少。PD雷达具有相对较高的发射功率以及长时间的工作范围。在本文中,我们提出了一种形状辅助目标检测方法,用于使用PD架构进行微型无人机监视雷达,以减轻地面上高散射点引起的错误警报。根据目标测量和基于HU矩的形状提取方法,提出的分割阈值选择方法组成了分割阈值选择方法。由作者的研究小组开发的PD雷达系统验证了所提出的方法的性能,显示出可行性在减轻微无散检测中的剪切器引起的虚假警报方面具有良好的可行性。
由于低成本无人机的普及,小型无人机的高爆检测最近已成为一个非常重要的课题,因为这对安全构成了越来越大的潜在风险[1][2]。FMCW 雷达被认为是最适合无人机检测的解决方案之一,因为它结构简单,具有短距离检测能力[1]-[4]。小型无人机的检测是一项具有挑战性的任务,因为它们的尺寸非常有限,并且采用非反射材料,因此雷达截面 (RCS) 非常小。因此,只有利用毫米波频率、高发射功率以及具有低噪声系数 (NF) 和高动态范围的接收器,才能优化雷达检测范围和分辨率。在这种情况下,氮化镓 (GaN) 微波技术代表了性能最佳的解决方案,因为它们为发射器和接收器微波前端提供了最先进的性能系数[4]-[6]。利用微波频率下卓越的 GaN 功率密度,有利于实现紧凑型高功率发射器,以增强无人机目标的弱回波信号(低 RCS)。另一方面,由于兼具低噪声和宽动态范围特性,GaN 技术在 RX 部分也非常有吸引力 [5]-[9]。这一特性对于用于无人机检测的 FMCW 雷达接收器至关重要,因为 LNA 需要检测非常低的无人机回波信号(接近热噪声水平),同时在存在强干扰/阻塞信号的情况下保持其线性度,这些信号通常是由于雷达杂波和其自身发射器功率放大器的泄漏造成的 [3][4]。在本文中,我们描述了一种基于 GaN 的 Ka 波段 MMIC LNA,可用于 FMCW 雷达接收器,用于小型无人机检测。采用 mmW-GaN 技术可以同时瞄准低 NF、高增益和大动态范围,从而在 Ka 波段上方实现无与伦比的综合性能。