仅供研究使用。不可用于诊断程序。© 2024 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。COL28212 0124
具有脆弱X综合征特征或脆弱X相关疾病的个体,包括:O智障人士,发育延迟或自闭症谱系障碍; o怀疑X-相关的原发性卵巢不足的40岁以下原发性卵巢不足的妇女; o具有易碎X相关震颤或共济失调综合征一致的神经系统症状的个体。具有脆弱X综合征的个人或家族史的个人正在寻求生殖咨询,包括:o具有脆弱X综合征家族史或未经诊断的智力残疾家族史的个人; o患有积极的细胞遗传学易碎X检测结果的受影响的个体或亲戚正在寻求有关载体状态的信息; o已知载体母亲的胎儿产前测试。FMR1变体的基因测试对所有其他用途进行了研究,因为没有足够的证据支持有关与此程序相关的健康结果或益处的一般结论。
此预印本版的版权持有人于2023年8月31日发布。 https://doi.org/10.1101/2023.08.30.554628 doi:Biorxiv Preprint
RNA 结合蛋白 (RNA-BP) 在发育和疾病中起着调节基因表达的关键作用。然而,在人类原代细胞中全基因组识别它们的靶标一直具有挑战性。在这里,我们应用了一种改进的 CLIP-seq 策略来识别 FMRP 翻译调节因子 1 (FMR1) 的全基因组靶标,这是一种富含大脑的 RNA-BP,其缺乏会导致脆性 X 综合征 (FXS),这是最常见的遗传性智力障碍。我们在人类背侧和腹侧前脑神经祖细胞以及从人类多能干细胞分化而来的兴奋性和抑制性神经元中发现了 FMR1 靶标。同时,我们在 FMR1 基因缺失后测量了相同四种细胞类型的转录组。我们发现 FMR1 优先与人类神经细胞中的长转录本结合。FMR1 靶标包括人类神经细胞独有的基因,并与 FXS 和自闭症的临床表型有关。使用图形扩散和 FMR1 CLIP-seq 和转录靶标的多任务聚类进行综合网络分析,揭示了 FMR1 在人类神经发育过程中调控的关键途径。我们的结果表明,FMR1 调节不同神经细胞类型之间的一组共同靶标,但也以细胞类型特异性的方式针对人类兴奋性和抑制性神经祖细胞和神经元中的不同基因组。通过定义分子子网络和验证特定的高优先级基因,我们确定了 FMR1 调节程序的新组件。我们的研究结果为人类神经发育中关键神经元 RNA-BP 的基因调控提供了新的见解。
总共确定了 14 种具有不同主要作用方式的药物用于体内筛选。其中 11 种显示出对一种或多种行为有活性。在对不同药物和不同行为进行少量进一步迭代研究(Tranfaglia 等人,2019 年)之后,HLX-0201 和 HLX-0205 在功效、商业和监管原因的基础上取得了进展。HLX-0206 是 Healnet 的预测,已获得许可。这些药物在两种不同的 FXS 小鼠模型 Fmr1 KO1 和 Fmr1 KO2 中进行了测试,结果由 3 个独立的 CRO 确认。所有药物均在行为测试前 2 周服用。所呈现的数据是来自在不同时间进行的几次实验的综合数据。
脆性 X 综合征 (FXS) 是一种遗传性疾病,由 X 染色体上的脆性 X 信使核糖核蛋白 1 (FMR1) 基因突变引起,导致智力障碍、行为障碍和独特的身体特征。该基因编码 FMRP 蛋白,该蛋白对于调节突触功能和可塑性至关重要。1,2 在 FXS 中,CGG 三核苷酸重复扩增超过 200 次重复会导致 FMR1 基因启动子区域高甲基化,从而导致转录沉默和随后的 FMRP 缺失。3 这种缺失会破坏对 mRNA 翻译的正常抑制,导致突触处各种蛋白质的过度合成。这些蛋白质的过量产生会干扰突触信号传导和可塑性,导致 FXS 中观察到的认知障碍和行为特征。4
FMR1基因编码称为FMRP的RNA结合蛋白(脆弱的X智力低下蛋白),位于XQ27.3中,具有17个外显子,延伸超过39 kb的基因组DNA。该基因在5'UTR区域具有CGG多态性重复。此重复序列中的突变是大多数情况的原因:
摘要脆弱的X综合征(FXS)代表了遗传性智力残疾的最普遍形式,是自闭症谱系障碍的第一个单根原因。fxs是由于不存在RNA结合蛋白FMRP(脆弱的X信使核糖核蛋白)而引起的。神经元迁移是大脑发育的重要步骤,允许神经元从其生发壁nir将其移动到最终整合位点。FMRP在神经元迁移中的确切作用在很大程度上尚未开发。使用FMR1 -NULL小鼠中产后鼻迁移(RMS)神经元的实时成像,我们观察到,FMRP的缺失会导致神经元迁移延迟和轨迹改变,与中心体运动的缺陷有关。RNA干扰诱导的FMR1的敲低表明这些迁移缺陷是细胞自主的。值得注意的是,与这些迁移缺陷有关的主要FMRP mRNA靶标是微管相关蛋白1b(MAP1B)。击倒MAP1B表达有效地拯救了大多数观察到的迁移缺陷。最后,我们通过证明没有FMRP的缺乏在迁移神经元核的微管的笼子中诱导缺陷来阐明发挥作用时的分子机制,而迁移神经元核的细胞核的缺陷,这是由MAP1B敲击救出的。我们的发现揭示了FMRP与MAP1B合作的新型神经发育作用,通过影响微管细胞骨架来共同策划神经元迁移。
Ma S*、Skarica M*、Li Q、Xu C、Risgaard RD、Tebbenkamp ATN、Mato-Blanco X、Kovner R、Krsnik Z、De Martin X、Luria V、Marti-Perez X、Liang D、Karger A、Schmidt DK、Gomez-Sanchez Z、Qi C、Gobeske KT、Pochareddy S、Debnath A、Hottman CJ、Spurrier J、Teo L、Boghdadi AG、Homman-Ludiye J、Ely JJ、Daadi EW、Mi D、Daadi M、Marin O、Hof PR、Rasin MR、Bourne J、Sherwood CC、Santpere G、Girgenti MJ、Strittmatter SM、Sousa AMM、Sestan N. 灵长类背外侧前额皮质的分子和细胞进化。科学2022; doi: 10.1126/science.abo7257。 PMID:36007006 Hunt JFV、Li M、Risgaard RD、Ananiev GE、Wildman S、Zhang F、Bugni TS、Zhao X、Bhattacharya A。高通量小分子筛选用于重新激活脆性 X 综合征人类神经细胞中的 FMR1。細胞。 2022; 11(1):6 doi: 10.3390/cells11010069。 PMID:35011630 Men Y、Ye L、Risgaard RD、Promes V、Zhao X、Paukert M、Yang Y。星形胶质细胞 FMRP 缺乏细胞自主上调 miR-128 并破坏发育星形胶质细胞 mGluR5 信号传导。国家科学院院刊2020 年; doi:10.1073/pnas.2014080117。 PMID:32958647 Li M、Shin J、Risgaard RD、Parries M、Wang J、Chasman D、Liu S、Roy S、Bhattacharyya A、Zhao X。识别人类神经发育中 FMR1 调节的分子网络。基因组研究。 2020 年; 30(3): 361-374。 doi:10.1101/gr.251405.119。 PMID: 32179589
