人们使用两个认知系统来理解和操作数字 - 非符号系统,主要依赖于无符号的幅度估计(例如,阿拉伯数字)和象征性系统,基于符号形式的数字处理(Ansari,2008; Feigenson,dehaene and dehaene and Spelke,dehaene and Spelke,2004; Waring and Pening and Penerner-wilger,2017)。数值认知的开发是一个逐步的过程,它是从非符号或近似数字系统开始的。近似数字系统是一个先天认知系统,它支持估计幅度的估计而不依赖语言或符号。然而,数量和基本算术技能的符号表示的作用随着年龄的增长而增加(Artemenko,2021)。基本的算术技能在日常生活,STEM教育以及许多涉及数学的科学中至关重要:在各种IT应用中,物理,化学,技术和工程学中都非常重要。更好地理解简单和复杂的精确计算的基本大脑机制对于数值认知非常重要,并深入了解了近似数字系统和精确符号表示系统中的网络中不同大脑区域之间的关系。实际上,将来可以使用这些知识来提高一个人的数字技能,消除与他们缺乏相关的问题(算术和数学素养的降低,dyscalculia)。已经表明,所有这些缺点都可能对整个经济和社会产生负面影响(Butterworth,Varma和Laurillard,2011年)。因此,实用
针灸、按摩、太极拳、八段锦等中医非药物疗法已成为临床治疗各种疾病的广泛干预措施。近年来,对中医非药物疗法机制的初步研究大多基于功能性近红外光谱 (fNIRS) 技术。FNIRS 是一种创新的、非侵入性工具,用于监测大脑皮层血流动力学变化。我们的综述包括过去 10 年进行的临床研究,确立了 fNIRS 是一种可靠且稳定的神经成像技术。本综述探讨了该技术在神经科学领域的新应用。首先,我们总结了 fNIRS 的工作原理。然后,我们介绍了在健康个体中使用 fNIRS 的预防性研究和对接受中医非药物疗法的患者的治疗性研究。最后,我们强调了鼓励未来 fNIRS 研究进步的潜力,从而为相关领域的研究建立理论框架。
神经病学领域数字医疗的持续发展依赖于便携且经济高效的大脑监测工具,这些工具可以准确地实时监测大脑功能。功能性近红外光谱 (fNIRS) 就是这样一种工具,它作为功能性磁共振成像的实用替代品,以及脑电图等模式的补充工具,在研究人员和临床医生中越来越受欢迎。本综述通过确定推动当前 fNIRS 研究的两大趋势,介绍了 fNIRS 对神经病学数字医疗个性化目标的贡献。第一个主要趋势是使用 fNIRS 进行多模式监测,这使临床医生能够访问更多数据,帮助他们了解患者脑血流动力学与其他生理现象之间的相互联系。这使临床医生能够对身体健康进行全面评估,以获得更详细和个性化的诊断。第二个主要趋势是 fNIRS 研究正在采用自然实验范式进行,涉及熟悉环境中的多感官刺激。在动态活动或虚拟现实中对大脑进行多感官刺激监测有助于了解日常生活中发生的复杂大脑活动。最后,讨论了未来 fNIRS 研究的范围,以促进更准确地评估大脑激活,并让 fNIRS 作为数字医疗设备的临床接受度更高。
功能性近红外光谱(fNIRS)是一种很有前途的脑成像方式,可用于研究道德情绪的神经基础。然而,使用 fNIRS 测量道德情绪的可行性尚未确定。在本研究中,我们使用 fNIRS 来检测两种典型的道德情绪——内疚和羞耻引起的大脑激活。我们向参与者呈现内疚和羞耻的背景以唤起情绪反应,并使用 fNIRS 测量大脑活动。单变量一般线性模型分析显示,眶额皮质、背外侧前额皮质和颞中回对两种情绪都有显著激活,右颞顶交界处对内疚有特定激活。多变量分类分析显示整体识别准确率为 52.50%,在分类内疚、羞耻和中性情绪时明显高于偶然水平。这些结果表明使用 fNIRS 评估由内疚和羞耻引起的大脑激活的可行性,并展示了 fNIRS 在研究道德情绪的神经相关性方面的潜力。
功能性磁共振成像 (fMRI) 通常对婴儿和幼儿使用限制过多或侵入性过强。fNIRS 还易于使用,并且对运动具有相对的耐受性。因此,它是一种特别适合发育人群的方法选择。尽管有这些优势,但婴儿和幼童仍然是具有挑战性的研究参与者,因为他们注意力不集中、不理解和/或不一定遵守指令、不容易保持静止或可能不愿意接受 fNIRS 上限。自首次用于婴儿以来的二十五年里,fNIRS 技术、实验方法和数据分析技术已经有了长足的发展 2 – 4 ,以满足发育神经成像的特殊需求和挑战。因此,发育性 fNIRS 研究呈指数级增长 5 (图 1)。事实上,自 2010 年以来,增长特别迅速,这可能与发育社区中 fNIRS 专业知识的增加以及出现了更多种类、价格更实惠的商业化系统有关。相对于 fMRI 和脑电图 (EEG),自 2017 年以来,新的婴儿发育出版物(0 至 2 岁儿童)的分布显示 fNIRS 有所增加,这表明婴儿研究方法的选择可能会发生转变。6
功能性磁共振成像(fMRI)通常太限制或侵入性,以至于与婴儿和幼儿一起使用。fnirs也易于使用,并且相对耐受运动。因此,它是发展种群的特别合适的方法论选择。尽管有这些优势,但婴儿和幼儿都在挑战研究参与者,他们的注意力范围很短,不了解和/或一定遵守说明,不要轻易保持静止或不愿意接受FNIRS上限。在两十年半的时间里,自从它首次与婴儿,FNIRS技术,实验方法和数据分析技术使用以来,技术已经发展了2 - 4,以满足发育神经影像的特殊需求和挑战。因此,发展性FNIRS研究正在成倍增长5(图1)。的确,自2010年以来,增长一直特别快,可能与增强发展社区的FNIRS专业知识以及在更易于使用的价格范围内出现更多的市售系统。相对于fMRI和电掌位图(EEG),自2017年以来,新婴儿发育出版物的分布(具有0-2岁)的分布表明,FNIRS的增加表明,婴儿研究方法选择的潜在变化。6
消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
运动执行是人类行为的一个基本方面,已利用 BCI 技术进行了广泛的研究。EEG 和 fNIRS 已被用于提供有价值的见解,但它们各自的局限性阻碍了性能。这项研究调查了融合脑电图 (EEG) 和功能性近红外光谱 (fNIRS) 数据在运动执行范式中对静息状态与任务状态进行分类的有效性。使用 SMR 混合 BCI 数据集,这项研究将单峰 (EEG 和 fNIRS) 分类器与多峰融合方法进行了比较。它提出了使用卷积加性自注意机制 (MECASA) 的运动执行,这是一种利用卷积运算和自注意来捕获多峰数据中复杂模式的新颖架构。 MECASA 建立在 CAS-ViT 架构之上,采用计算效率高、基于卷积的自注意模块 (CASA)、混合块设计和专用融合网络,将来自独立 EEG 和 fNIRS 处理流的特征组合在一起。实验结果表明,MECASA 在所有模态 (EEG、fNIRS 和融合) 中的表现始终优于成熟方法,与单模态方法相比,融合方法始终能提高准确性。fNIRS 通常比单独的 EEG 实现更高的准确性。消融研究揭示了 MECASA 的最佳配置,其中嵌入维度为 64-128 为 EEG 数据提供最佳性能,OD128(上采样光密度)为 fNIRS 数据产生优异结果。这项工作凸显了深度学习,特别是 MECASA,在增强 EEG-fNIRS 融合用于 BCI 应用的潜力。
功能性近红外光谱 (fNIRS) 是一种非侵入性光学成像技术,它利用近红外光测量大脑皮层氧合情况。近年来,fNIRS 的使用呈指数级增长。空间记忆被定义为学习和使用空间信息的能力。这一神经心理过程在我们的日常生活中不断使用,可以通过 fNIRS 进行测量,但尚未有研究评估该技术是否可用于空间记忆的神经心理学评估。本研究旨在回顾使用 fNIRS 对人类空间记忆进行神经心理学评估的实证研究。我们使用了四个数据库:PubMed、PsycINFO、Scopus 和 Web of Science,共发现 18 篇文章符合条件。大多数文章评估了空间或视觉空间工作记忆,主要在基于计算机的任务中进行,使用 16 通道的 fNIRS 设备,主要测量前额叶皮质 (PFC)。分析研究发现,工作记忆负荷与 PFC 活动之间存在线性或二次关系,与健康成年人相比,健康老年人的 PFC 活动活跃度更高,行为结果更差,临床样本中 PFC 过度活跃是一种补偿形式。我们得出结论,fNIRS 与空间记忆的标准神经心理学评估兼容,因此可以用皮质功能活动数据补充行为结果。
摘要 系统性低频振荡 (sLFO) 是频率为 0.01–0.15 Hz 的非神经元振荡。这些 sLFO 以对称(横跨身体中线)和高度可预测的延迟穿过整个身体和大脑,可以通过功能性近红外光谱 (fNIRS) 和血氧水平依赖性功能性磁共振成像观察到它们。它们的特性可作为检测和监测循环功能障碍的有用生物标志物。纯 sLFO 可以在外围(例如手指、脚趾、耳垂)收集。在这里,我们介绍了一种用于检测和分析外围 sLFO 的 7 通道 NIRS 血氧仪 [MNO],我们将其命名为并发连续波 fNIRS 系统 (CON-CW fNIRS)。我们的 CON-CW fNIRS 体积小(10 9 10 9 20 cm 3 ),便携性高,功耗低,性价比高(低于 300 美元)。我们表明,我们的设备非常可靠,并且可以通过直接比较(r max = 0.908 D [HbO] 和 r max = 0.841 D [Hb])以及与之前发布的数据进行比较,重现使用商用 fNIRS 设备获取的值。