摘要 目的——卫星因其轨迹可预测性和为军事行动提供的基本功能而成为有吸引力的军事目标。在过去的 13 年中,至少有三个国家(即美国、中国和印度)成功进行了动能反卫星 (ASAT) 导弹试验,这大大增加了低地球轨道空间碎片的数量,其中一些碎片仍在轨道上运行并对太空资产构成威胁 (Miglani, 2019, Wolf, 2007)。所有这些反卫星武器试验都是针对进行试验的国家的自有太空资产进行的,因此,这些事件并未触发武装冲突法 (jus in bello) 的适用。然而,这并不意味着对这些试验的法律评估,特别是在战时法方面,在实践中无关紧要,因为技术破坏能力已经存在,使用这些武器的合法性尚不明显。事实上,一些作者已经强调了使动能反卫星武器合法化的困难,或者更准确地说,对太空资产的武装袭击。有人认为,由于无法预测空间碎片的数量以及爆炸产生的空间碎片可能造成的二次附带损害(Stephens and Steer,2016),在某些情况下,动能反卫星攻击很难符合比例原则,甚至在某些情况下,攻击本身可能具有无差别性(Koplow,2009)。可以看出,反卫星武器的合法性值得怀疑,主要是因为动能攻击的影响,但有些武器旨在干扰通信系统或使用定向能量造成故障,而不会产生空间碎片,可能除了一颗非活动轨道卫星。因此,适用于动能反卫星攻击的大多数论点可能不适用于非动能反卫星攻击。在本文中,作者认为,在某些情况下使用非动能反卫星武器很难符合战争法的一般原则,尤其是瞄准规则。本文的目的在于分析在武装冲突中使用非动能反卫星武器是否符合战时法,如果不符合,那么其合法使用的条件是什么。
09:00打开Sandra holasek Styrian州议会议会Klemens Fellner dean自然科学学院,格拉兹大学Gundolf Haase大学共同宣传者Colibri Colibri Colibri Thomas Thomas Pock共同导演Biotech Motechmed Graz Mather Leobacher Gunther Leobacher Mathematics and Mathematics and Mathematics and Mathematics and Scientific of Mathematic and div of Graz
本演示文稿中包含的信息并非包含包罗来语或包含读者可能需要的所有信息。您被鼓励您对Gran Tierra Energy Inc.(“ Gran Tierra”,“ GTE”或“ Company”)以及本演讲中包含的信息进行自己的分析和审查。不限于,您应该阅读与公司有关的公开文件的全部记录,考虑您的财务,法律,会计,税收和其他专业顾问的建议,以及您认为适合调查和分析公司的其他因素。您应该仅依靠公司提供的信息,而不应依靠该信息的一部分来排除其他信息。公司尚未授权任何人向您提供其他或不同的信息,任何此类信息,包括有关Gran Tierra的媒体文章中的任何此类信息,不应依靠。没有明示或暗示的代表或保证,是格兰·泰拉(Gran Tierra)就本文档中包含的信息的准确性或完整性做出的,本演示文稿中包含的信息没有或不应依赖格兰·蒂拉(Gran Tierra)的承诺或代表。
1。简介6 2。适应政策和治理8 2.1国际环境8 2.2欧洲背景8 2.2.1欧洲绿色交易8 2.2.2 EU适应战略8 2.2.3公司可持续性报告指令(CSRD)9 2.3爱尔兰背景9 2.3.1立法和政策9 2.3.2治理10 2.3.3计划11 3.3计划11 3。气候服务,影响和风险评估12 3.1气候观察12 3.2气候预测,气候服务和能力建设和网络12 3.2.1欧洲12 3.2.2爱尔兰13 3.2.3 3.3潜在的影响和风险评估14 3.3.1潜在影响14 3.3.2风险评估14 4.金融16 4.1公共金融16 4.2私人金融16 4.3物理风险管理16 5。气候适应监测19 5.1国际19 5.2欧洲19 5.3国家19 6。研究与参与度20 6.1 EPA研究2030 20 6.2爱尔兰的气候变化评估20 7。参考22
评估了先前的报告和草案修正案所建议的五个ABI站点,其中fosse Andre West和Les Vardes(Ruette Godfrey)继续未能满足足够的生物多样性,以保留以保持足够的生物多样性。在2019年和2021年的报告之后,现已显示出足够的生态质量以保留以保留足够的生态质量。为了为这些更新的评估提供更多的粒度,2019年无法访问Andre East,因此无法从其边界进行视觉评估。在2024年的评估中,授予对该站点的访问权限,随后的增强评估符合指定的阈值。对于前SNCI的La Hougue du Pommier East(Rue de la Trappe),该地点是在2019年提议的,因为先前的沼泽草原栖息地被植树所取代。但是,由于这棵树种植了半成熟的林地栖息地,因此现在还达到了ABI名称的阈值。最后,莱斯·埃弗拉德(Les Fordards)是2019年脱颖而出的边缘候选人,由于大量的马放牧和历史上的栖息地而被提议。但是,从那时起,由于农业管理,生态学
简介:在过去的近二十年中,火星侦察轨道(MRO)上下文摄像机(CTX)仪器[1]基本上捕获了MARS的整个MARS表面,每个像素大约6米,导致迪克森等人由迪克森等人提供的全球马赛克。[2]在2023年初,更新了先前发表的“β”马赛克产品。这种马赛克能够通过解决地理服分的巨大技术挑战来生成“统一”和分析准备就绪数据集,从而为科学家提供了几乎整个火星的表面。
*有关特定指示,请参见单个PI。†Cabozantinib是一种酪氨酸激酶抑制剂,靶向MET和血管内皮生长因子受体2等。 MEKI,有丝分裂原激活的蛋白激酶抑制剂; NF1,1型神经纤维瘤病; PI,处方信息; PN,丛状神经纤维瘤。 1。 fda。 trametinib pi。 可用:https://bit.ly/3zfqed4(2025年1月3日访问); 2。 fda。 binimetinib pi。 可用:https://bit.ly/414vmmh(2025年1月3日访问); 3。 fda。 cobimetinib pi。 可用:https://bit.ly/4ft763i(2025年1月3日访问); 4。 fda。 selumetinib pi。 可用:https://bit.ly/48zxsp9(2025年1月3日访问); 5。 EMA。 selumetinib smpc。 可用:https://bit.ly/3zf7vyr(2025年1月3日访问); 6。 onclive。 FDA对NF1相关神经纤维瘤的米尔甲替尼的优先审查。 可用:https://bit.ly/3z1bo8g(2025年1月3日访问); 7。 Armstrong Ae等。 BMC癌。 2023; 23:553。†Cabozantinib是一种酪氨酸激酶抑制剂,靶向MET和血管内皮生长因子受体2等。MEKI,有丝分裂原激活的蛋白激酶抑制剂; NF1,1型神经纤维瘤病; PI,处方信息; PN,丛状神经纤维瘤。 1。 fda。 trametinib pi。 可用:https://bit.ly/3zfqed4(2025年1月3日访问); 2。 fda。 binimetinib pi。 可用:https://bit.ly/414vmmh(2025年1月3日访问); 3。 fda。 cobimetinib pi。 可用:https://bit.ly/4ft763i(2025年1月3日访问); 4。 fda。 selumetinib pi。 可用:https://bit.ly/48zxsp9(2025年1月3日访问); 5。 EMA。 selumetinib smpc。 可用:https://bit.ly/3zf7vyr(2025年1月3日访问); 6。 onclive。 FDA对NF1相关神经纤维瘤的米尔甲替尼的优先审查。 可用:https://bit.ly/3z1bo8g(2025年1月3日访问); 7。 Armstrong Ae等。 BMC癌。 2023; 23:553。MEKI,有丝分裂原激活的蛋白激酶抑制剂; NF1,1型神经纤维瘤病; PI,处方信息; PN,丛状神经纤维瘤。1。fda。trametinib pi。可用:https://bit.ly/3zfqed4(2025年1月3日访问); 2。fda。binimetinib pi。可用:https://bit.ly/414vmmh(2025年1月3日访问); 3。fda。cobimetinib pi。可用:https://bit.ly/4ft763i(2025年1月3日访问); 4。fda。selumetinib pi。可用:https://bit.ly/48zxsp9(2025年1月3日访问); 5。EMA。selumetinib smpc。可用:https://bit.ly/3zf7vyr(2025年1月3日访问); 6。onclive。FDA对NF1相关神经纤维瘤的米尔甲替尼的优先审查。可用:https://bit.ly/3z1bo8g(2025年1月3日访问); 7。Armstrong Ae等。BMC癌。 2023; 23:553。BMC癌。2023; 23:553。
量子力学这个词组会让非专家看得眼花缭乱,因此量子传感、量子加密——任何量子的东西——都很难掌握。以量子计算为例,它也许是量子承诺的圣杯。我们大多数人都能理解传统计算机中一个比特要么开要么关——二进制代码语言中的 1 或 0。我们明白这一点。但同时出现 1 和 0 显然不那么直观。这就是量子比特的领域,量子比特的能力使量子计算成为如此强大的承诺。量子比特的工作类似于普通比特,但具有明显的量子优势。量子比特和所有其他利用的量子功能尤其依赖于两个重要且密切相关的量子现象——叠加和纠缠。在考虑叠加时,想象一枚抛出的硬币在空中翻转会有所帮助,它还不是“正面”或“反面”,而是处于两种可能性均等的状态。同样,叠加的量子粒子,无论是单个光子还是电子等亚原子实体,都具有同时成为两种不同可能性的反直觉能力。纠缠是指两个量子物体之间的关系,即使它在另一边,也可以测量其中一个物体的属性