作者衷心感谢以下个人和组织提供的宝贵意见和反馈:阿根廷共和国中央银行的 Agustin Alifraco;澳大利亚财政部 Julia Sheldrake 和 Jana Schmitz;奥地利财政部 Angelika Schlögel、Ewelina Boula 和 Dominik Freudenthaler;奥地利金融市场管理局的 Stanislava Saria 和 Alexander Natter;奥地利国家银行 Konrad Richter 和 Andreas Timel; Ariane Meunier,FOD Financiën - SPF Finances Belgium;比利时国家银行的 Marco Valerio Geraci;巴西中央银行的丽塔·吉朗 (Rita Girão);保加利亚财政部 Polya Filipova;加拿大财政部的 Connor Colvin 和加拿大财政部的 Nathan Holman;智利金融市场委员会 Claudia Alarcón Inzunza;哥伦比亚金融监管局的 Juan Sebastian Ortegón Ocampo 和 María Paula Rueda Viviescas;哥斯达黎加证券总监 Pamela Méndez、哥斯达黎加中央银行 Jose Pablo Barquero;路易斯·迭戈·费尔南德斯(Luis Diego Fernández),哥斯达黎加国家金融体系监管委员会; Tajana Labudović,克罗地亚金融服务监督机构;克罗地亚国家银行;捷克共和国财政部 Josef Mladek;捷克国家银行的 Ivan Zahradka;丹麦金融监管局 Lars Brander Ilsøe Hougaard、Camilla Neuenschwander;爱沙尼亚财政部 Mirjam Rannula; Jan Ceyssens、Ana-Maria Fimin、Ivan Keller 和 Mattias Levin,欧盟委员会、欧洲银行管理局、欧洲保险和职业养老金管理局;欧洲证券和市场管理局的 Claudia Guagliano、Anne Chone 和 Giulio Bagattini;乌塞尔·鲍曼 (Ursel Baumann),欧洲中央银行;芬兰银行的 Tatu Rasanen; Jean Dalbard、Arthur Frappereau、Cécile Mahe、Clément Robert,法国经济、财政和工业与数字主权部、财政部总局;德国联邦财政部 Bernd Auras;希腊银行的 Eleftheria Kostika;香港金融管理局罗安森 (Anson Law)匈牙利中央银行 Peter Sajtos;冰岛财政部 Guðrún Inga Torfadóttir 和冰岛中央银行 Ólafur Hlynsson; Novita Bachtiar,印度尼西亚金融服务管理局;爱尔兰财政部 Mai Santamaria 和 Jefferson Vieira;以色列银行的 David Marzuk;意大利经济财政部 Gian Paolo Ruggiero、Laura Larducci 和 Luca Ferrais;
摘要无线电力传输(WPT)技术的最新进展为消费者和行业提供了更方便,高效和智能的电动汽车(EV)和智能设备(SDS)(例如智能手机,无人机,机器人和物联网)的收费。WPT已被采用,以免手工频繁地进出充电。仅凭重型电池就无法解决所有移动物体的饥饿能量问题,最终应该为此充电。在本教程中,首先简要介绍了包括电感功率传递(IPT)在内的WPT的基本原理,并解释了主要的WPT理论,例如耦合线圈模型,Gyrator电路模型,磁性镜像模型和一般统一的动态词曲模型。电动汽车的WPT进展得到了广泛的解释,它们分类为固定的电动汽车(SCEV)和道路驱动电动汽车(RPEV)。SCEV由于便利性和安全性而变得越来越吸引人。此外,由于电动汽车市场份额和可再生能源的市场份额迅速增加,电动汽车和网格的互操作性变得非常重要。电动汽车不再是简单的能源消费者,而是电网的能源提供者。WPT是一种有前途的解决方案,可以在停放时自动将电动汽车与网格连接。这是SCEV作为可互操作系统的灵活手段的潜在贡献。详细解决了线圈设计,大容忍度充电,补偿电路和异物检测(FOD)问题。也总结了全球技术发展的最新进展。rpevs没有严重的电池问题,例如大,重,昂贵且昂贵的电池组以及较长的充电时间,因为它们在移动时直接从道路上获得电源。通过创新的半导体开关,更好的线圈设计,巷道构造技术和更高的操作频率的优点,已提高了WPTSS的功率转移能力,效率,电磁场(EMF),气隙,大小,重量和成本。引入了WPT的最新进展。SD的WPT中的进步被解释了,根据操作环境,它们彼此之间的不同。智能手机是WPT中最成功的应用程序,现在正在不断发展,以获得太空中的更多收费自由。由于分布式和物联网的多种性质,WPT的广泛领域非常具有挑战性。各种动力水平和耐力时间的各种无人机和机器人需要具有足够快速的充电速度,并具有位置自由度。最近的技术发展将解释。解决了WPT问题的未来,其中包括可互操作的无线电动汽车,更长的距离IPT,3D无线充电器和合成的磁场聚焦(SMF)。
摘要自2000年代后期以来,国家航空航天管理局(NASA)参与了用于空间应用的金属添加剂制造(AM)的开发和成熟。通过材料表征和测试,标准开发,组成的制造以及对推进开发和飞行应用的注入,重点介绍了对AM过程的理解。除了机械和热物理测试外,NASA成熟的常用航空合金(镍,铜,不锈钢和钢,铝和基于钛的镍,铝和基于钛的钢),除了机械和热物理测试外,还通过详细的AM过程和热处理表征。尽管这些合金在许多推进应用中都被积极使用,但需要使用集成计算材料工程(ICME)(ICME)和高性能应用程序的过程开发进行持续的AM优化合金。针对的应用是液体火箭发动机;先进的推进系统;和高热通量,高压和/或使用可以降解合金(例如氢)的推进剂的空间推进。本文使用激光粉末床融合(L-PBF)和激光粉末定向能量沉积(LP-DED)工艺强调了更常见的AM合金的表征和物理特性。此外,本文讨论了一些正在进行的新型合金开发和使用AM用于这些恶劣环境中的新型合金开发和成熟,例如GRCOP-42,GRCOP-84,NASA HR-1,GRX-810和C-103。这些过程的结果表明,AM可以实现使用ICME优化合金的快速开发和持续的努力,从而产生更高的性能。这些合金进行了建模,基本冶金评估,热处理研究,详细的微观结构表征和机械测试运动。这与直接应用特定的组件制造和热火测试相结合,通过高占用周期测试使技术准备水平(TRL)的提高能够提高。此处介绍了这些新型AM启用合金和正在加工的开发,包括冶金和机械性能研究。还讨论了这些合金的平行组件开发以及热火测试和未来发展的最新进步。Keywords : Additive Manufacturing, Propulsion, Rockets, Alloy Development, GRCop-42, GRCop-84, Refractory, GRX-810, NASA HR-1, L-PBF, LP-DED, DED, Laser Powder Bed Fusion, Laser Powder Directed Energy Deposition Acronyms/Abbreviations AM Additive Manufacturing (AM), Carbide Dispersion Strengthened (CDS), Directed能量沉积(DED),家用或异物碎片(DOD或FOD),氢环境封闭(HEE),氢含水剂指数(HEI),热等速度压迫(HIP),集成计算材料工程(ICME),低循环疲劳(LCF),LCF),Laser粉末床融合(LPBF),Laser fordect(Laseredect),Laser dive-dive-dive-dirotect(Laser dirotect)(LASEREDEDED)
这篇研究文章在 2022 年 CJCS 国防和军事战略论文竞赛的战略研究论文类别中获得第二名。虽然 JFSC 的许多学生都取得了很高的研究水平,但提交给比赛的论文代表了专业军事教育机构每年完成的一些最好的研究、写作和思考。获得认可的手稿达到了极高的标准。其他比赛获奖者将在《联合部队季刊》上找到。由 1 CDR Von P. H. Fernandes、Maj Ashley Gunn、MAJ Lucas Hoffmann 和 Lt Col Nita McQuitery 撰写 1959 年,海军少将亨利·埃克尔斯 (Henry Eccles) 将后勤描述为“国家经济与其作战部队战术行动之间的桥梁”。 1 火箭后勤,即使用轨道级火箭将货物从地球上的一个地方运送到另一个地方,有可能大大缩短这一距离。自埃克尔斯发表声明以来的 70 年里,对更快、更高效的后勤行动的竞争需求改变了国防部 (DoD) 开展后勤的方式以及后勤对全球军事行动的贡献。高效、精简的后勤不仅为指挥官提供了行动自由,而且扩大了作战范围。国防部开展高效后勤行动的能力决定了美国在全球范围内投射力量的程度和范围。虽然空运成为第二次世界大战后勤行动的一个特色,但货船继续为全球军事行动运输绝大多数物资和军事装备。空运加快了后勤工作,但需要付出财政成本,并且对重量和体积有限制。然而,空运速度对于美国欧洲司令部、美国非洲司令部、美国南方司令部和美国印太司令部战区的一些后勤挑战来说仍然不够快。美国太空军有一个新的尖端研发项目,即先锋计划,该计划正在探索使用轨道级火箭进行点对点运输。火箭物流承诺比战场上的空运速度更快,但成本更高,对货物类型的限制也更多,在本文的范围内,货物类型定义为人员和设备。与民用运输任务不同,军事任务没有可预测的目的地,无法投资基础设施开发以确保顺利着陆。2因此,先锋计划寻求的解决方案是拥有全地形最终下降系统,具有坚固的外部结构以处理着陆时的异物碎片 (FOD),并使用新技术,例如目前由 NASA 开创的技术,这将允许下降的火箭在最终下降过程中创建着陆台。
最重要的真菌属负责在食品和饲料商品中产生霉菌毒素,包括曲霉,镰刀菌,替代品和青霉。同时存在非常普遍,植物还可以将这些异生元化合物化为改良(掩盖)霉菌毒素。可以通过快速筛选测试(例如LFIA,ELISA,量子,生物传感器)来检测霉菌毒素,并使用LC-MS/MS(例如LC-MS/MS)精确定量。Cemph正在不断开发和验证新方法,用于检测食品和饲料商品中多肌毒素,重点是LFIA和LC-MS/MS,包括样本预处理的最佳化,识别元件的合成(单核抗体和单核抗体和分子质量的Polimented Polymers))。于2024年1月启动,莎拉·德·萨格(Sarah de Saeger)教授和西斯卡·克鲁贝尔(Siska Croubels)教授(根特大学)正在协调Horizon Europe Project upister(欧盟AU的合作伙伴关系,用于为每个人提供弹性,包容和安全的食品系统)。该项目旨在为霉菌毒素污染产生开创性的见解,并开发解决方案以增强非洲食品安全系统。该财团汇集了14个国际和跨学科伙伴,包括食品安全专家,科学家,研究人员,农业经济学家,生物学家,药剂师,决策者,监管机构,沟通者和导师。一起,他们将致力于增强食品安全,并降低人畜共患病和食物传播疾病的流行。2)霉菌毒素和人类健康该研究线重点关注霉菌毒素和人类健康的关系。。上层将扩大对非正式部门内霉菌毒素污染的知识,改善污染的预测工具,增强风险评估框架,并创建创新的解决方案,以降低发酵食品价值链中的霉菌毒素水平。由于霉菌毒素是食物链中重要的毒理学污染物,因此对于估计人类暴露于霉菌毒素并评估这些饮食中污染物对公共卫生的影响至关重要。除了将霉菌毒素食物的发生数据与食物消耗的人群数据结合在一起外,最近已经提出,直接测量生物流体暴露的霉菌毒素生物标志物,以对单个水平进行更准确的暴露评估,并研究与其他生物学过程,差异,diatary模式,疾病,疾病等。因此,CEMPH开始了几项研究,从而采用多毒素方法来评估人口在大规模上的暴露(FOD RT 11/02,Foodball和IARC-ugent-iwt-Project)。该研究线的另一个重点是揭示多种霉菌毒素发生的影响对人类疾病的影响:Cemph正在参加“佛兰芒语国际展览会” Flexigut,这是一个由IBOF资助的项目,旨在通过整体的杂物方法来理解角色
关键系统、其操作频段和要求需要进行表征并与其他系统集成。人机系统与硬件和软件元素的最佳集成对任务执行的多个方面都有影响,包括人类健康和绩效、风险缓解、有效设计和功能、增强安全性以及降低生命周期成本。人机系统集成 (HSI) 领域代表了一种跨学科、全面的跨领域方法,涵盖了将人作为系统考虑因素和目标集成到所有其他系统组件和多个领域中的技术和管理流程。除了人类活动之外,HSI 还涵盖培训、运营和支持维度。此外,HSI 是系统工程实践的重要推动因素,强调人机系统方面,以优化完全集成的系统性能,同时在开发的最初阶段系统地融入所有用户的需求。与国家太空探索运动一致,NASA 正在开发 Gateway,这是一个月球轨道平台,将作为宇航员栖息地,支持前往深空的交通,验证新技术和系统,并充当科学实验室和通信中心等用途。它是通过可进化的基础设施和先进技术将人类探索延伸到深空的阶段的基本要素,支持其他探索架构元素的组装和物流。为了探索 HSI 在任务(系统的系统)生命周期中实施的现状和未来计划,HSI 员工资源组以 Gateway 计划为案例研究,举办了一次 HSI 研讨会。它揭示了约翰逊航天中心的不同组织如何在其流程中纳入 HSI,为 Gateway 的开发和运营做准备。研讨会重点关注 HSI 方法,用于实施 NASA 的六个 HSI 领域:人为因素工程、运营资源、宜居性和环境、可维护性和可支持性、安全性和培训。本文报告了研讨会的结果,以及 NASA 的一些 HSI 历史背景,以及使用员工资源组促进技术知识的成功。作者希望这些信息可用于传播最佳实践,以便将其转化为其他太空探索系统。关键词:人机系统集成、NASA、系统工程、NASA HSI 领域、员工资源组、系统的系统、人作为系统 首字母缩略词/缩写 ARGOS:主动响应重力卸载系统 CAST:机组人员自主调度测试 CDR:关键设计评审 ConOps:作战概念 CREAM:认知可靠性和错误分析方法 DDT&E:设计、开发、测试和评估 DoD:国防部 EED:电子发动机显示器 EMU:额外机动单元 ERG:员工资源组 FOD:飞行运营理事会 HCD:以人为本的设计 HITL:人在回路中
1. 显示所有产权线。2. 提供北箭头和比例尺。3. 提供街道名称。4. 记录任何现有或拟议的地役权和地役权类型。5. 如果要在地役权内铺设硬面路面,必须获得相应教区部门或公用事业公司的书面许可/批准。6. 提供从产权线到公共道路边缘或沿公共道路边缘路缘后方的尺寸,在 _____________。使用清晰描绘街道路缘线和产权线之间距离的测量(需要视线三角形)或经认证的公证宣誓书(由所有者、申请人或相关设计专业人员签署,说明向教区提供的尺寸真实准确)来验证这些尺寸。7. 请提供由注册土地测量员盖章的标的物业测量副本。测量应显示所有现有改良、地役权、最近街道的名称、北箭头,并且测量中必须包括比例尺。尺寸必须清晰易读。8. 注意现有或拟议的路面类型(沥青或混凝土)。碎石灰石绝不是可接受的表面。9. 标明产权线和街道边缘之间所有草地的位置。这包括产权线和人行道后侧之间 1 英尺的草地。10. 标明公共通行权内现有树木的位置。未经杰斐逊教区公园大道部门批准,不得砍伐通行权内的现有树木。11. 仅当需要 CPZ 场外改进时才提供景观美化计划或植物材料清单。12. 标明任何与公共通行权相邻的拟议围栏或结构(围栏或其地基的任何部分都不得侵占公共通行权)。如果提议设置大门,则需要获得交通工程部门的批准。13. 此开发项目必须符合商业大道覆盖区 (CPZ) 的要求。合规性可能需要修改拟议的场地布局。请联系规划部门 (736-6335) 了解更多信息。14. 该开发项目必须符合商业大道步行区 (CPZ-PED) 的要求。合规性可能需要修改拟议的场地布局。请联系规划部门 (736-6335) 了解更多信息。15. 该开发项目必须符合混合用途走廊区 (MUC) 的要求。合规性可能需要修改拟议的场地布局。请联系规划部门 (736-6335) 了解更多信息。16. 该开发项目必须符合 Fat City 区 (FC-1、2 或 3) 的要求。合规性可能需要修改拟议的场地布局。请联系规划部门 (736-6335) 了解更多信息。17.此开发项目必须符合 Fairfield Overlay District (FOD) 的要求。合规性可能需要修改拟议的场地布局。请联系规划部门 (736-6335) 了解更多信息。18. 此开发项目必须符合 Old Bucktown Mixed-Use Districts (OBM 1 或 2) 的要求。合规性可能需要修改拟议的场地布局。请联系规划部门 (736-6335) 了解更多信息。19. 提供从侧面地界线到车道边缘的尺寸,该尺寸与车道穿过的地界线平行。20. 提供前地界线、人行道靠街一侧和街道路缘顶部的立面或
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。 GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而受到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍,重量仅为传统钛风扇叶片的三分之一 - 现已成为 GE 宽体发动机的标志 世界纪录推力发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材制造部件 发动机获得 FAA 批准,可使用增材制造压缩机传感器 GE 继续投资和改进发动机。GE 工程师改进了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发射规格相比,燃油消耗减少了 3.6% 在翼时间缩短了 60% 世界一流的 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其全球维护、维修和大修 (MRO) 提供商网络可随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机以满足具有目标工作范围的预期生命周期,从而优化硬件利用率并最大限度地降低拥有成本。额定推力为 94,000 磅GE90-94B 发动机以早期 GE90 发动机型号的成功经验为基础,为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后。GE 交付了 GE90-115B 发动机,该发动机目前为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证,起飞推力为 380 kN(85,000 磅)。,对于像 777 这样可搭载 375 名乘客(重量约 230 吨)的大型飞机,仅需两台发动机即可。作为 GE/NASA 节能发动机 (E3) 计划的衍生产品,它也是当今最省油、最安静、最环保的发动机。除了提供最大的推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率改进、更低的噪音污染和比当今高涵道比发动机低 33% 的氮氧化物排放量。本次研讨会试图通过简要介绍发动机的功能来突出介绍发动机的各个方面。2 对比高推力级涡扇发动机 (> 200 kN) (修改自 [2]) GE-90 CF6-50C2 CF6-80C2公司通用电气 (美国)通用电气 (美国)通用电气 (美国)自 1995 年 9 月 1978 年 10 月 1985 年 10 月开始使用在空客 A-340 和 B-777 KC-10 (军用) A-300/310, 747/767 上首次飞行描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 mm 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO时推力 388.8 kN 233.5 kN 276 kN巡航时推力 70 kN 50.3 kN 50.4 kNS.F.C.(SLS) 8.30 mg/N-s 10.51 mg/N-s 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/sFADEC的存在* 是 否 是其他信息 NOx排放量降低33%。噪音低于同级其他 TF(由于风扇叶尖速度低)LPT 的 TET 为 1144 K。燃油消耗(s.f.c.)低于其他发动机,寿命长,可靠性高。RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5 TO 推力 269.4 kN 366.1 kN 202.3 kN 巡航推力 52.1 kN 72.2 kN 176.3 kNS.F.C.15.95 mg/N-s(巡航) 15.66 mg/N-s(巡航) 10.06 mg/N-s 空气质量流量 728 kg/s 728+ kg/s 687 kg/s FADEC(Y/N) 否 是 否其他信息 合同中(截至 1995 年 9 月)世界上功率最强大的传统空调发动机(Trent 772) *FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作量。• 降低飞机运营成本。分析理论可参见 [3]。低推力级涡扇发动机 (< 200 kN)(根据 [2] 修改)3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底 1970 年 2 月 1988 年 7 月开始使用 首次飞行于空客 A-340 波音 727/737 和 DC-9 空客 A-320 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约)1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长度 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米压力比 37.4 17.3 29.4涵道比 6.6 1.00 5.42TO时推力 138.8 kN 72.9 kN 111.25 kN巡航时推力 30.78 kN 18.9 kN 21.6 kN S.F.C.16.06 mg/N-s 23.37 mg/N-s 16.29 mg/N-s空气质量流量 466 kg/s 148 kg/s 355 kg/sFADEC(Y/N) 是 否 是其他信息 4 GE-90涡扇发动机循环分析 以下是借助计算机程序进行的简单高涵道比涡扇发动机循环分析的结果。可以从[4]中获得更广泛和准确的分析。GE90 发动机的可用数据仅限于其起飞推力、涵道比 (BPR) 和总压比 (OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(如 CF6-80C2 和 CFM56)并考虑了适当的改进而假设的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(km)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300m f(千克/秒)1.079 2.968SFC(毫克/氮-秒)15.600 7.910Sp。推力 (N-s/kg) 120.100 278.100 计算得出的巡航推力值与配备两台 GE90 发动机的波音 777 飞机所需的推力非常接近,即每台发动机约 65-70 kN。GE 于 1990 年 1 月宣布开发 GE90。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上的 228 小时飞行时间。GE90 耐力发动机完成了超过 14,000 个循环,并表现出出色的分段耐久性。(489 kN) 的推力。93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 的关系 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 的关系 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0推力 SFC 推力和 SFC 与 TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 GE90 获得 FAA 认证,GE 航空发动机公司完成了有史以来由发动机制造商进行的最广泛的地面和飞行测试项目之一。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台完整的发动机问世。unisolve_pharmacy_software_manual.pdf 从那时起,GE 及其收益分享参与者共运行了 13 台开发发动机,这些发动机验证了发动机固有的设计优势。七台发动机的推力超过 100,000 磅。(444.5 kN),其中一台发动机的推力达到创纪录的 110,000 磅。事实上,GE90 开发发动机的推力水平已超过 100,000 磅。(444.5 kN),持续超过 65 小时。作为所需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅。(1.13 和 3.63 千克) 的发动机复合叶片鸟类吞食测试。1994 年 10 月,四只 2.5 磅的鸟被吸入,发动机以产生 85,000 磅(377.8 kN) 推力所需的速度运行,在炎热的天气下起飞。没有推力损失,发动机在吸入后所需的 20 分钟运行期间响应所有油门命令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运行。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片脱落测试。34042629589.pdf 为什么要使用全新发动机?释放叶片在风扇转速为 2,485 rpm 时引爆,比目标高出 10rpm,发动机产生超过 105,000 lb。(466.8kN) 的海平面静态 (SLS) 校正推力。发动机支架系统按设计运行,测试展示了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在整个测试的第一阶段,发动机在 45 次飞行中累计运行近 228 小时。发动机性能异常出色,性能水平超出规格,并在整个飞行包线内为飞行员提供不受限制的油门运动。市场需求 从历史上看,飞机的重量和推力要求一直在增长。低底盘汽车展评判评分表 如今,市场青睐重量更重、航程更长且内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于采用 GE90 动力的大型宽体飞机。为航空公司的未来做好准备 • 适用于整个新型大型飞机系列的通用发动机。• 新型宽体飞机所需的推力比当今的发动机高 20-30%。• 飞机历史上需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内置的总体性能优势 • 比当今的发动机高 10% 的 SFC。• 具有通用性的高推力增长。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计 GE90 的设计目的在于: • 推力增长。• 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9 • 低排放。• 低噪音。• 降低运营成本。选择循环以节省大量燃料。其余的乘法和除法依次为 • 优化了旁通比。• 优化了总压比。• 为最低 SFC 和燃油消耗而设计。10.sinıfya coru bankası pdf 选择的设计可最大限度地提高航空公司的利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商开发的维护程序。• 低噪音和低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证为 84,700 磅。(533.4 kN)。复合材料风扇 2。(376.5 kN) 推力 - 1995 年 2 月• 首次增长认证为 92,000 磅。(408.9 kN) 推力 - 1996 年 5 月。• 可能增长到 120,000 磅。高推力和测试经验总结• > 422.3 kN 下运行超过 145 小时• > 435.6 kN 下运行超过 95 小时• > 440.0 kN 下运行超过 75 小时• > 444.5 kN 下运行超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时 注:海平面静态 (SLS) 校正推力水平 八台 GE90 发动机已在 445 kN 或以上的 SLS 推力下运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证 (490.3 kN)。• 三重红线块测试的“彩排”。• 1.13 kg 伯德认证/叶片脱落认证。10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1.低压压缩机 (LPC)/助推器3.高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5.高压涡轮机 (HPT)6.低压涡轮 (LPT) 11 复合材料风扇 GE90 风扇设计 风扇图 • 22 复合材料宽弦叶片和平台。• 大风扇直径,可实现更高的空气流量。• 风扇齿轮传动 - 降低风扇叶尖速度,从而产生更少的噪音。• 低叶尖速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查,重量更轻。• 混合(锥形/椭圆形)旋转器,减少核心碎片的摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。GE90 风扇叶片 风扇叶片 • 宽弦复合材料风扇 - 高性能、低重量。• 环境阻力 - GE90 风扇材料系统表现出与当前飞机复合材料相同的环境阻力。12 • GE90 风扇复合材料系统与目前在用的风扇复合材料系统类似。• 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。• 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。燃烧室 • 成功的先进军用项目的双圆顶环形燃烧室。• 降低 NOX 排放水平(低至 10 ppm。)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 圆顶气动热调节功率设置。• 高度重新点火能力 30,000 英尺(9.144 公里),有裕度。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为第 1 级和第 2 级。los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的放大在测试单元和飞行测试中展示了性能和可操作性。• 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 刚性、简单支撑的转子系统(如 CFM56)可实现动态稳定性。• 仿照成功的 CF6-80 设计而构建的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统功能。• 具有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 具有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。15 其他特点 ([2]) GE90 与环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体降低任务总燃料消耗 = 降低任务总污染物。• 推力与核心流量比更高。GE90 燃烧室提供更好的可操作性,同时降低排放水平 • 双环形燃烧室。• 飞行员圆顶针对可操作性进行了优化 - 主圆顶针对高功率进行了优化。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 已验证排放水平。可运输性• 专为标准发动机运输方法而设计。GE90推进器• 比当今的高涵道比涡扇发动机更小 GE90模块化设计• 仅允许更换推进器• 将推进器/喷嘴与风扇定子模块分开• 风扇定子模块保留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,110,000磅。通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。• 422.3 - 435.6 kN 风扇改进的涡轮机械。18 参考文献 1.• 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。• 466.8 kN 风扇带有分离式核心的更高 P/P 风扇。• 511.2 + kN TF带有分离式核心的更高速度和 P/P 风扇。17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然无法获得有关该发动机的确切技术信息,例如其重量、压力比、TIT、巡航推力、sf.c 等。导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,在推力和燃油效率方面,该发动机是独一无二的。