越来越多的物联网(IoT)设备的使用会产生对数据传输的更大需求,并给网络带来了增加的压力。此外,与云服务的连接性可能是昂贵且效率低下的。雾计算提供与用户设备接近的资源,以克服这些缺点。但是,在物联网应用程序中的服务质量(QoS)和雾资资源管理的优化正变得具有挑战性。本文介绍了需要执行延迟敏感任务的车辆流量应用程序中的动态在线卸载方案。本文提出了两种算法的组合:动态任务调度(DTS)和动态能量控制(DEC),旨在最大程度地减少整体延迟,增强用户任务的吞吐量并最大程度地减少雾层的能量消耗,同时最大程度地利用资源约束的雾气节点的使用。与其他方案相比,我们的实验结果表明,这些算法可以将延迟减少高达80.79%,并将雾节点的延迟减少高达66.39%。此外,此方法将任务执行吞吐量提高了40.88%。
摘要 - 尽管效率不断提高,但当今的数据中心和网络消耗了大量的能量,预计该需求将进一步上升。一个重要的研究问题是雾计算是否可以遏制这一趋势。作为雾基础设施的现实部署仍然很少见,研究的重要部分依赖于模拟。但是,现有的电源模型通常仅针对特定组件,例如计算节点或电池约束的边缘设备。结合了分析和离散事件建模,我们开发了一个整体但颗粒状的能量消耗模型,可以随着时间的推移确定计算节点的功率使用以及网络传播和应用程序。模拟可以合并数千个设备,这些设备在分布式,异质和资源受限的基础构造上执行复杂的应用程序图。我们在智能城市的情况下评估了我们公开可用的原型叶,表明它可以对持势雾的雾计算体系结构进行研究,并可用于评估动态任务放置策略和其他节能机制。索引项 - 仿真,建模,雾计算,边缘计算,能量消耗
摘要 - 构成物联网(IoT)的数十亿个对象,预计将生成量的数据量。各种自动化服务(例如监视)将在很大程度上取决于使用不同的机器学习(ML)算法。传统上,ML模型由集中式云数据中心处理,在该中心,IoT读数通过访问,地铁和核心层中的多个网络啤酒花将云卸载到云中。这种方法不可避免地会导致过度的网络功耗以及服务质量(QoS)降解,例如增加延迟。相反,在本文中,我们提出了一种分布式的ML方法,除了云外,还可以在IoT节点和雾式服务器等中介设备中进行处理。我们将ML模型抽象成虚拟服务请求(VSR),以表示深神经网络(DNN)的多个互连层。使用混合整数线性编程(MILP),我们设计了一个优化模型,该模型以能源有效的方式在云/雾网络(CFN)中分配DNN的层。我们评估了DNN输入分布对CFN性能的影响,并将这种方法的能效与基线的能源效率进行比较,在该基线中,在集中式云数据中心(CDC)中处理了所有DNN的所有层。
摘要:人工智能 (AI) 是一种革命性的范式,它为每个人提供了基于第六代 (6G) 边缘计算的电子医疗服务。因此,本研究旨在推动基于人工智能的经济高效的医疗保健应用。信息物理系统 (CPS) 是互联网世界的关键参与者,人类及其个人设备(如手机、笔记本电脑、可穿戴设备等)为医疗保健环境提供了便利。整个医疗领域中传感器和执行器的数据提取、检查和监控策略都由云技术推动,以吸收和接受整个新兴革命浪潮。对来自传感器设备的大量数据进行高效和准确的检查在带宽、延迟和能源方面造成了限制。由于医疗物联网 (IoMT) 的异构性,驱动的医疗保健系统必须智能、可互操作、融合和可靠,以提供普及且经济高效的医疗保健平台。不幸的是,由于功耗较高和数据包传输率较低,在联网医疗中实现可互操作、收敛和可靠的传输具有挑战性。在这种情况下,本文有四个主要贡献。第一个贡献是开发单芯片可穿戴心电图 (ECG),并借助模拟前端 (AFE) 芯片模型(即 ADS1292R)来收集 ECG 数据,以使用基于物联网的信息物理系统 (CPS) 检查老年或慢性病患者的健康状况。第二个贡献提出了一种基于模糊的可持续、可互操作和可靠算法 (FSIRA),这是一种智能和自适应决策方法,可根据所选参数对急诊和危重患者进行优先排序,以合理的成本提高医疗质量。第三个贡献是提出了一种用于移动和联网医疗的特定基于云的架构。第四个贡献是在可靠性、数据包丢失率、收敛性、延迟、互操作性和吞吐量之间找到适当的平衡,以支持自适应 IoMT 驱动的联网医疗。经过检验和观察,我们提出的方法优于传统技术,因为它提供了高可靠性、高融合度、互操作性,以及从医疗健康角度分析和解释系统准确性的更好基础。对于 IoMT,启用医疗云是需要关注的关键因素,因为它还面临着带宽减少、延迟增加和能耗增加的巨大障碍。因此,我们提出了在 6G 平台上面向 IoMT 的智能医疗的带宽、互操作性、可靠性、延迟和能耗之间的数学权衡。
本教程介绍了一种性能工程方法,该方法使用人工智能和耦合仿真来优化边缘/雾/云计算环境的服务质量 (QoS),该仿真是联合仿真型容器编排 (COSCO) 框架的一部分。它介绍了基本的人工智能和联合仿真概念、它们在雾计算背景下的 QoS 优化和性能工程挑战中的重要性。它还讨论了如何将人工智能模型(特别是深度神经网络 (DNN))与模拟估计结合使用以做出最佳资源管理决策。此外,我们还讨论了一些使用 DNN 作为替代方法来估计关键 QoS 指标的用例,并利用此类模型在分布式雾环境中构建动态调度策略。本教程使用 COSCO 框架演示了这些概念。COSCO 中的指标监控和模拟原语展示了基于人工智能和模拟的调度程序在雾/云平台上的有效性。最后,我们为雾管理领域出现的资源管理问题提供了人工智能基线。
摘要 —本文介绍了一个分析框架,用于研究在云到物连续体中虚拟控制器放置的最佳设计选择。主要应用场景包括低延迟信息物理系统,其中需要实时控制操作来响应物联网 (IoT) 节点状态的变化。在这种情况下,由于从网络边缘到云的延迟,在云服务器上部署控制器软件通常是无法容忍的。因此,最好通过将控制器逻辑移近网络边缘来牺牲可靠性和延迟。将物联网节点建模为随时间线性发展的动态系统,对状态偏差采用二次惩罚,通过考虑虚拟雾控制器的可靠性和响应时间延迟,获得最佳控制策略的递归表达式和由此产生的最小成本值。我们的结果表明,在雾端点上配置虚拟化控制服务时,延迟比可靠性更为关键,因为它决定了雾控制系统的敏捷性以及状态测量的及时性。基于无人机轨迹跟踪模型,还进行了广泛的模拟研究,以说明可靠性和延迟对雾中自动驾驶汽车控制的影响。
2 文献综述和相关工作 15 2.1 面向服务的雾架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 30
摘要:脑部计算机界面使用大脑的信号(例如脑电图)来确定大脑状态,而大脑状态又可用于发出命令,例如控制工业机械。虽然云计算可以帮助创建和运行工业多用户BCI系统,但从EEG信号产生的大量数据会导致缓慢的响应时间和带宽问题。雾计算可减少高需求计算网络中的延迟。因此,本文引入了用于BCI处理的雾计算解决方案。该解决方案包括使用将机器学习算法的雾节点转换为命令以控制网络物理系统的命令。机器学习模块使用深度学习编码器来从EEG信号中生成特征图像,这些特征图像随后被随机森林分类为命令。使用各种分类器比较分类方案,这是获得最佳性能的随机森林。此外,在雾计算方法中进行了比较,并仅通过使用雾计算模拟器来使用云计算。结果表明,与纯云计算方法相比,雾计算方法的潜伏期较小。
图1:海洋雾过程 - 前流大陆或海洋吸气气溶胶作为FCN。通过蒸气的扩散沉积(插图)在FCN周围生长。Kohler(1936)认为,液滴生长需要超过由表面张力和溶质浓度的相对影响确定的临界半径(分别分别增加/降低了液滴蒸气,分别增加/降低)。最小的湍流(Kolmogorov或K)涡流在ABL中的作用,在该ABL中,FCN被嵌入其中,但尚未了解(插图)。请注意,对于空气,K量表和(Obukhov-Corrsin O-C)温度耗散量表的顺序相同,因此在k涡流或立即周围FCN的温度是同质的。产卵液滴会结合和沉降(插图)。贡献上海的过程/现象包括波浪和破裂,夜间对流,湍流和混合,潮汐和电流。相应的低大气现象包括波边界层以及剪切和对流湍流。在空气界面,湍流,质量,动量和气溶胶交换通过波浪破裂和通过[Molecular]皮肤层的恢复而发生,这会燃烧空气 - 海洋相互作用。短/长波辐射(SWR/LWR)和对流过程也影响海面温度(SST)。MABL的重要贡献来自概要和中尺度[对流]系统,包括前部,高和低点,反转,海面和雾顶的加热/冷却,DIEL循环,云,云,湍流和气溶胶。如果存在,则来自边界混合,上升流,升级的波浪破裂,海洋/海洋[差分]加热和内部边界层(IBL)的沿海贡献对雾生命周期有重大影响。
●通过检查人孔进入油脂陷阱的放电侧。●视觉检查放电T恤,并注意逃入下水道系统的油脂量。●视觉检查并记下储罐的表面和油脂层。●探测油脂层,并注意浮动雾的深度。●是否有必要将雾层视为更大或等于储罐体积的25%,则保证了由运输车泵出的泵。请记住,水箱底部将有一个污泥层,在决定抽水罐时也应考虑这一点。●无论条件如何,这都是最佳的管理实践,下水道使用规则和规定要求您每三个月抽出润滑脂拦截器储罐。●请记住,这些检查,抽水和维护不仅保护城镇的收集系统和抽水系统,还可以防止昂贵的备份到您的机构中。