漂浮的海上风力涡轮机(FOWT)正在成熟,它们越来越成为海上风能生产的可行且有吸引力的解决方案。但是,在运输和安装期间(T&I),由于草稿的差异以及缺乏系泊和风负载,FOWTS的运动特性与现场条件有很大差异。安装,操作和维护(IO&M)是海上风力涡轮机发展的重要财务因素。对于底部固定的海上风力涡轮机,从过去几十年的经验中众所周知,IO&M的基于时间和产量的可用性。对于浮动的海上风力涡轮机(FOWT),这些活动的基于时间和产量的可用性是未经评估和不确定的。还需要进一步研究不同方法对大型组件替换的影响。启动了Fowt IO&M JIP,以确定与Fowt T&I和O&M相关的挑战和可能性,并起草对这些操作的基于时间和产量的可用性分析的方法。JIP是由Marin和TNO在成长财团内引发的。参与者是:Marin,TNO,GRAW,Shell Global Solutions,Ampelmann,Boskalis,Seaway7,Royal IHC,Carbon Trust,Van Oord Ords Offshore Offshore Wind和SeaTrium。JIP由三个工作包(WP)组成:WP1文献审查和利益相关者咨询; WP 2:开发时间和基于产量的可操作性分析方法,用于FOWT IO&M; WP3将方法应用于现实的案例研究。本文档是WP1报告,概述了可用的和相关的文献。另外,集成了JIP参与者的反馈和输入。Fowt T&I和O&M的主题非常广泛。在公共可用文献中描述了许多方面。该评论旨在避免在已经公开可用的琐碎信息的摘要中摘要,并将重点放在Fowt T&I和O&M的以下关键主题上:流体动力,操作和成本建模。总而言之,FOWT O&M的主要挑战被认为是进行主要组成部分置换(MCR)的方法。已向该行业提出了几种MCR策略,在该行业中,基于船只开发的当前状态和现场策略是最可行的方法(例如,浮动,自养的起重机)预计将来是Fowt商业规模的最需要的方法。本报告以第2节中的fowt浮点数的概述开始。第2节描述了典型浮点类型的就地和过境流体动力学特征,概述了到目前为止的FOWT发展以及未来的前景。第0节概述了FOWT设计和操作的标准和指南。第4节描述了用于Fowt T&I和O&M操作的特定船只和设备的机队。第5节放大了当前的FOWT开发项目,重点是T&I活动。第6节描述了运输策略。第7节目前和创新的安装策略。第0节描述了Fowt的O&M策略。最终在第10节中给出了有关HSE的一些注释。在第9节中描述了可用的成本建模方法。
摘要。本文分析了浮动平台和风力涡轮机转子的耦合动力学。特别是,阻尼是从转子和浮动平台的耦合方程中显式推导出来的。阻尼的分析导致了对不稳定性现象的研究,从而获得了导致非最小相位零点 (NMPZ) 的显式条件。分析了两个 NMPZ,一个与转子动力学有关,另一个与平台俯仰动力学有关。后者引入了一个新颖性,本文提供了一个显式条件来验证它。在本文的第二部分,从浮动平台阻尼的分析出发,提出了一种控制浮动海上风力涡轮机 (FOWT) 的新策略。该策略允许在平台俯仰运动中对控制器施加显式阻尼水平,该阻尼水平可适应风速和运行条件,而无需改变平台俯仰周期。最后,通过对参考 FOWT 进行气动-液压-伺服-弹性数值模拟,将新策略与无补偿策略和非自适应补偿策略进行比较。比较了产生的功率、运动、叶片螺距和塔基疲劳,表明新控制策略可以减少结构疲劳而不影响发电量。
•刚性多体流体结构相互作用(RMB-FSI),系统的多物理系统(SOS),计算多机2D/3D动态系统,集团参数建模以及2D/3D机械设备设计,并应用于浮动的离岸风力涡轮机(FOWT),无效的轴线(FOWT) (WEC)。•非线性动态,分叉,混乱理论,线性/非线性谨慎/连续系统中的机械振动,应用于振动吸收,非线性能量水槽,旋转系统中的能量收集,MEMS和NEMS共振器共振器的设计,以及旋转机器的健康监测和损坏。•非线性自适应/鲁棒控制系统设计,数字控制,机器人技术,机器人和自动化,并在自主系统下应用,在启动系统,四轮驱动器,腿部机器人,生物启发的机器人和康复机器人之下。•耦合的微分方程的非线性时间周期系统的扰动分析,并应用于自激发和参数激发的系统,陀螺仪系统,非自我学系统以及暴露于非守护力的弹性结构。奖励和荣誉
修订历史 I. 2012 年 7 月 新版本 II.2021年12月27日 新发行(文件编号:NKRE-GL-FOWT01,版本:2021年12月) 增加了文件编号 在文件标题中添加了副标题(浮动式海上风力发电机组入级检验) 将整个文件外观统一为新格式 根据以下参考标准和规范进行全面修订 - 浮动式海上风力发电技术标准(国土交通省海洋局安全政策科,国会函第286 号,2020年3月3日) - IEC TS 61400-3-2:2019 - IEC 61400-3-1:2019 - IEC 61400-1:2019 - IEC 61400-6: 2020 * 2022 年 3 月 31 日更正错误及小变更(文件编号无变更)附则 1.本指南自 2022 年 1 月 1 日起施行。2.除下列各项外,无论本指南有何规定,仍适用当时的规定。(1) 2022 年 4 月 1 日或以后受理制造期间入级检验申请的 FOWT
浮动风电需求主要通过采访海上行业相关利益相关者和与 COREWIND 项目合作伙伴的内部研讨会来确定。采访中分享的经验和趋势与详尽的文献研究相结合,并汇编成这份综合报告。各章讨论了浮动海上风电 O&M 的主要主题。报告首先对维护活动进行了分类。在此,指出了应用基于条件的维护的好处,并将结构健康监测和状态监测定义为经济战略的基础。随后,它总结了 FOWT 的特点以及要检查的关键部件,例如浮动底座、位置保持系统以及动态电缆。针对每个组件,审查了有关维护的监管要求,检查了常见故障,并介绍了典型的检查和监测方法。下一章讨论了遥控机器人 (ROV) 技术,并对现有的不同 ROV 类型及其应用领域进行了分类。它进一步讨论了它们在维护操作过程中的优势和局限性。本章最后提出了使用 ROV 的检查协议的建议,并提供了在采访 Equinor 时获得的有关 Hywind Park 中使用的 ROV 的第一手资料。
风力涡轮机比例模型的风洞试验是评估风力涡轮机空气动力学的一种经济有效的方法,可节省时间、成本并避免与全尺寸试验相关的不确定性。然而,风洞试验转子缩放程序的主要限制是无法将雷诺数与全尺寸相匹配。本文介绍了 DTU 10 MW 风力涡轮机风洞 1/75 比例转子的非平凡气动弹性优化设计、实现和实验验证。更具体地说,这项工作是为浮动式海上风力涡轮机 (FOWT) 应用而开发的(Lifes50+,Bayati 等人,2013 年,2014 年);尽管如此,所报告的方法和得出的结论在风力涡轮机转子缩放方面具有普遍有效性。最近也在风力涡轮机缩放方面做出了类似的努力(Bredmose,2014 年)。此外,在(Bottasso 等人,2014 年)中可以找到对缩放效应的深入分析,该分析涉及米兰理工大学风洞的先前活动:这项工作涉及气动弹性模型设计程序的定义,并且在推力和扭矩值匹配方面获得了良好的结果,并且正确缩放了叶片结构行为,同时考虑了弯曲 - 扭转缩放(Campagnolo 等人,2014 年)。
13.简化子结构对撞击载荷的实验研究,A. Krogstad,NTNU 14.水动力载荷建模对小水深浮动风力涡轮机及其系泊系统响应的影响,Kun Xu,NTNU 15.单桩基础海上风力涡轮机的 GPS/加速度计集成轮毂位置监测算法,Z. Ren,NTNU 16.浮动海上风电子结构的供应链 - TLP 示例,H.Hartmann,罗斯托克大学 17.海上风电场部署浮动支撑结构的批判性评论,M Leimeister,REMS,克兰菲尔德大学 18.对海上风力涡轮机最先进的 ULS 设计程序的评估子结构,C. Hübler,汉诺威莱布尼茨大学 19。海上浮动平台:运动缓解解决方案分析,A.Rodriguez Marijuan,Saitec Offshore Technologies 20。LIFES50+ OO-Star Wind Floater Semi 10MW 浮动风力涡轮机的最新模型,A. Pegalajar-Jurado,DTU 21。LIFES50+ OO-Star Wind Floater Semi 10MW 的 CFD 模型验证和粘性流效应研究,H. Sarlak,DTU 22。非线性波浪载荷对单桩风力涡轮机结构的影响,M. Mobasheramini,皇后大学,Bryden 中心 23。设计浅水深度的 FOWT 系泊系统,V. Arnal,LHEEA,Centrale Nantes 24。整体混凝土柱浮标平台批量生产的建造可能性,C. Molins,UPC-Barcelona Tech 25。使用扩展轮廓线方法对海上风力涡轮机进行极端响应估计,J-T.Horn,NTNU 26。OO-Star 风力浮子的制造和安装,T.Landbø,Dr.techn.Olav Olsen 会议 F 27。分析尾流和下游涡轮机性能建模的实验验证,F. Polster,柏林工业大学 28。用于预测 NACA0015 翼型周围气动升力的降阶模型,M.S.Siddiqui,NTNU 29。快速发散一致的流降阶模型,E. Fonn,SINTEF Digital
图 70 货船和油轮在加州中部沿海过境 (MarineCadastre.gov) ........................................................................................................................................................................... 141 图 71 货船和油轮在加州莫罗湾沿海过境 (MarineCadastre.gov) ........................................................................................................................................................... 142 图 72 货船和油轮在加州北部沿海过境 (MarineCadastre.gov) ........................................................................................................................................................... 143 图 73 货船和油轮在俄勒冈州和华盛顿州沿海过境 (MarineCadastre.gov) ........................................................................................................................................... 143 图 74 所有船只在夏威夷过境 (MarineCadastre.gov) ........................................................................................................... 144 图 75 缅因州海上风电选址图 (缅因州,2021 年) ........................................................................................................... 145 图 76 货船、油轮和拖船过境缅因湾 (MarineCadastre.gov 145 图 77 风力发电曲线 (Musial, 2020) ........................................................................................... 158 图 78 加州 OCS 的海上风速和地点 (Musial et al., 2016) ........................... 159 图 79 风速和 Si