患有DS的儿童还表现出由于CHE Maperapy后的感染和毒性而引起的治疗相关死亡率增加,复发后的累积风险更高,而复发后的累积较低。4这种情况强调了开发更有效和目标疗法以改善这些弱势儿童的生存和护理质量的迫切需求,这些弱势儿童的生存率和质量通常与21三体疾病有关的额外的共同辅助性,这使他们的临床管理变得复杂。靶向方法和免疫疗法对小儿白血病的有希望的结果。5因此,需要开发新的DS-ALL模型来快速提高药物发现并完善现有的治疗策略。我们最近建立了所有患者衍生的异种移植物(PDX),并证明,使用MEK抑制剂与常规治疗相结合的DS-ALL中靶向的靶向躯体改变具有改善这些儿童预后的可能性。6靶向由21染色体副本副本引起的剂量敏感机制也是一个深入研究的领域。7-9因此,使用EHT1610或其直接靶标FOXO1和STAT3对染色体21激酶DYRK1A的抑制作用在体外和体内都显示出有希望的细胞毒性作用。8
T细胞功能障碍,包括记忆力损失和疲劳,是CAR T细胞疗法功效的主要局限性。在CAR T细胞中操纵转录因子(TF)活性,例如过表达FOXO1和JUN或PRDM1和NR4A3的消融,可以改善其在肿瘤控制过程中的衰竭分化和记忆丧失。这表明长时间的肿瘤暴露可能会导致转录程序失调,以诱导CAR T细胞功能障碍和记忆力丧失。ezh2,催化赖氨酸27(H3K27ME3)在编排多个基因程序表达的H3的三甲基化中,在小鼠中T细胞免疫反应的调节中起着核心作用。然而,是否需要EZH2才能消除肿瘤,以及肿瘤是否靶向T细胞EZH2诱导CAR T细胞功能障碍仍然未知。在这里,我们证明了EZH2是CAR T细胞反应的主要调节剂,对肿瘤控制至关重要,并且在CAR T细胞中强迫表达耐磷酸化的EZH2的EZH2使它们具有增强的能力,可抵抗肿瘤诱导的功能障碍和记忆损失。
摘要:横纹肌肉瘤(RMS)是骨骼肌谱系的肿瘤。两个主要特征可以区分亚型:PAX3(或PAX7)和FOXO1基因之间的形态和存在/不存在。两个主要亚型是融合阳性肺泡RMS(ARM)和融合阴性胚胎RMS(ERMS)。本综述将重点介绍人类表皮生长因子受体(EGFR)家族的受体酪氨酸激酶的作用,该家族在RMS发作中包括EGFR本身,HER2,HER3和HER4以及受体酪氨酸激酶的潜在治疗靶向。eGFR由ERMS肿瘤和细胞系高度表达,在某些情况下导致肿瘤生长。如果未突变,HER2不直接参与RMS细胞生长的控制,而是可以在显着水平上表达。少数ERMS随着肿瘤生长的驱动活性而带有HER2突变。HER3经常被RMS过表达,并且可以在残留的肌源分化能力和对信号导向的治疗的抵抗力中发挥作用。可以通过两种方式来利用她的家人进行治疗方法:阻止其成员(对抗体或抑制剂的肿瘤生长发挥作用),并瞄准其成员以驾驶毒素或免疫效应者。
摘要:异常的表观遗传修饰是各种癌症发病机理的基本因素。因此,针对这些小分子(例如组蛋白脱乙酰基酶(HDAC)抑制剂和DNA甲基转移酶(DNMT)抑制剂)的畸变,提出了一种可行的癌症治疗策略。这项研究的目的是评估三链蛋白C(TSC)的抗癌能力,Trichostatin a的类似物是源自链霉菌SP的发酵。CPCC 203909。我们的研究表明,TSC证明了对人肺癌和尿路膀胱癌细胞系的有效活性,在低微摩尔范围内IC 50值。TSC诱导由caspase 3/7介导的凋亡,并在G2/M期停止细胞周期。与DNMT抑制剂法替滨结合使用时,TSC表现出协同的抗癌作用。另外,蛋白质分析阐明了酪氨酸激酶受体AXL的表达显着降低。值得注意的是,TSC的浓度升高与转录因子Forkhead Box O1类(FOXO1)的上调以及促凋亡蛋白BIM和P21的水平升高。总而言之,我们的发现表明TSC是具有HDAC抑制活性的有前途的抗癌剂。此外,我们的结果强调了TSC与DNMT抑制剂结合癌症治疗的潜在效用。
二肽基肽酶-4(DPP-4)抑制剂是降糖药物的2型糖尿病(T2DM)。我们研究了DPP-4抑制剂Evogliptin®(EVO)是否可以预防糖尿病心肌病(DCM)和基本机制。每天通过口服饲料每天对EVO(100 mg/kg/day)进行八个星期大的糖尿病患者和肥胖的db/db小鼠12周。 DB/DB对照小鼠和C57BLKS/J作为野生型(wt)小鼠接受相等量的车辆。 除了降血糖作用外,我们还检查了通过EVO治疗的心脏收缩/放松能力,心脏纤维化和心肌肥大的改善。 通过EVO治疗来确定改善糖尿病心肌病的机制,其对脂肪毒性的影响以及由心肌中脂质液滴积累引起的线粒体损伤。 EVO降低了血糖和HBA1C水平,并提高了胰岛素敏感性,但不会影响体重或血脂性。 心脏收缩/舒张功能,肥大和纤维化在经过EVO治疗的组中得到改善。 EVO通过抑制CD36,ACSL1,FABP3,PPARGAMMA和DGAT1的抑制,并增强FOXO1的磷酸化,表明其抑制作用。 通过激活PGC1A/NRF1/TFAM,通过激活线粒体生物发生的PGC1A/NRF1/TFAM实现了线粒体功能的改善和损伤的减少。八个星期大的糖尿病患者和肥胖的db/db小鼠12周。DB/DB对照小鼠和C57BLKS/J作为野生型(wt)小鼠接受相等量的车辆。除了降血糖作用外,我们还检查了通过EVO治疗的心脏收缩/放松能力,心脏纤维化和心肌肥大的改善。通过EVO治疗来确定改善糖尿病心肌病的机制,其对脂肪毒性的影响以及由心肌中脂质液滴积累引起的线粒体损伤。EVO降低了血糖和HBA1C水平,并提高了胰岛素敏感性,但不会影响体重或血脂性。心脏收缩/舒张功能,肥大和纤维化在经过EVO治疗的组中得到改善。EVO通过抑制CD36,ACSL1,FABP3,PPARGAMMA和DGAT1的抑制,并增强FOXO1的磷酸化,表明其抑制作用。通过激活PGC1A/NRF1/TFAM,通过激活线粒体生物发生的PGC1A/NRF1/TFAM实现了线粒体功能的改善和损伤的减少。RNA-seq的整个心脏结果证实,EVO治疗主要影响与脂质代谢相关的差异表达基因(DEG)。总的来说,这些发现表明EVO通过降低脂肪毒性和线粒体损伤来改善心脏功能,并为DCM提供了潜在的治疗选择。
摘要:一些研究表明,植物提取物和益生菌的组合可能是治疗2型糖尿病(T2DM)的更好方法,而不是单个干预措施。但是,在这方面,相对较少的相关报告仍然相对较少。因此,本研究旨在研究sibiricum saponin(PSS)和乳酸细菌(LAB)组合的治疗是否可以更好地管理T2DM。和组合的抗糖尿病机制是从葡萄糖代谢,微生物组和代谢组的角度研究的。结果表明,PSS+LAB可以更好地提高FBG水平,胰岛素敏感性,脂质代谢障碍和肝功能。蛋白质分析表明,PSS+LAB治疗显着增加了T2DM小鼠肝脏中P-PI3K/PI3K,P-AKT/AKT,GLUT2,IRS2和GSK-3β的表达,同时抑制FOXO1的表达。这种组合对肠道菌群的组成和丰度进行了积极调节。代谢组分析表明,与仅PSS治疗相比,该组合治疗的肠道微生物群代谢产物的变化更多。实验室+PSS对肠道菌群的改变导致丙氨酸,天冬氨酸和葡萄糖代谢途径的显着变化。这项研究可能为植物提取物和益生菌在T2DM的管理中的联合应用提供理论基础。
引言内源性胰腺β细胞质量和功能的增加将解决胰岛素缺乏症患者造成的危害。营养暴露,例如高血糖(1),高脂肪饮食(2、3)和其他营养过多的范式(4)通过有丝分裂的输入促进β细胞增殖,从而在下流信号上融合以横向流动,从而横向传播细胞周期的G1/s(3,5,5,6)。另一方面,通过β细胞死亡(7)和去分化(8,9)可能会损失胰岛素分泌能力;一些数据表明,人类2型糖尿病(T2D)中β细胞质量的减少可能已经高估了(10)。尽管如此,β细胞再生场中的关键障碍是增加了替补的策略也可能导致去分化(8、9、11)。胰岛素受体底物– 2(IRS-2)的全身缺失导致T2D样综合征由于β细胞功能降低和肿块而表现出明显的胰岛素耐药性(12,13)。通过抑制键β细胞因子PDX1(9,14),在该模型中远端胰岛素信号通路成员叉子盒蛋白O1(FOXO1)的因素推导。irs2 - / - β细胞也因细胞周期蛋白D2的诱导降低而对葡萄糖的增殖反应受损,并且恢复细胞周期蛋白D2丰度挽救了增殖到正常水平(15)。Cyclin D2,是产后β细胞膨胀的驱动因素和胰岛素抵抗的β细胞补偿(1,16-20),与Cyclin依赖性
3 Oxford Immune Algorithmics, Reading, UK ABSTRACT This study employs systems medicine approaches, including complex networks and machine learning- driven discovery, to identify key biomarkers governing phenotypic plasticity in pediatric high-grade gliomas (pHGGs), namely, IDHWT glioblastoma and H3K27M diffuse intrinsic pontine glioma (DIPG).通过整合单细胞转录组学和组蛋白质量细胞术数据,我们将这些侵略性肿瘤概念化为复杂的自适应生态系统,该系统由被劫持的oncofetal发育程序和病理吸引力动力学驱动。Our analysis predicts lineage-plasticity markers, including KDM5B (JARID1B), ARID5B, GATA2/6, WNT, TGFβ, NOTCH, CAMK2D, ATF3, DOCK7, FOXO1/3, FOXA2, ASCL4, PRDM9, METTL5/8, RAP1B, CD99, RLIM, TERF1, and LAPTM5, as drivers of细胞命运控制论。此外,我们确定了内源性生物电特征,包括Grik3,Grin3,Slc5a9,Nkain4和KCNJ4/6,是潜在的重编程靶标。此外,我们验证了先前发现的可塑性基因,例如PDGFRA,EGFR靶标,OLIG1/2,FXYD5/6,MTSSS1,SEZ6L,MTRN2L1和SOX11,证实了我们复杂系统方法的鲁棒性。此系统肿瘤学框架为精确医学提供了有前途的途径,通过指导由单细胞多摩学告知的组合疗法来优化患者的结果,并以PHGG表型可塑性为治疗性脆弱性。此外,我们的发现表明肿瘤表型可塑性(即过渡疗法)和PHGG生态系统中疾病的表观遗传重编程性能朝向稳定的,转分化的状态。因此,了解关键字:小儿神经胶质瘤;表型可塑性;癌症多组学;数据科学;系统医学;精度肿瘤学。引言小儿高级神经胶质瘤(PHGGS)代表致命疾病,没有任何精确诊断,有效的治疗或预防(Swanton等,2024)。这些侵略性肿瘤破坏了发育过程和组织稳态,导致形态发生,对治疗的抵抗力和免疫逃避(Senft等,2017; Jessa等,2019)。对其病理学的中心是表型可塑性 - 细胞在谱系身份之间适应响应微环境压力的能力。This plasticity arises from epigenetic dysregulation, such as oncohistone mutations like H3K27M (H3F3A) and driver mutations like TP53, ACVR1, etc., which destabilize chromatin structure, trapping cells in metastable, multipotent states and impairing their differentiation hierarchy (Shpargel et al., 2014; Paugh et al., 2011; Jessa et al., 2019)。实际上,这些塑料状态促进了肿瘤的进展和耐药性作为新兴行为,从而创造了不稳定的生态系统。
