为了获得更好的近似值,减少项 log ( M / q ) 被更新为每个字符串的项之和(好像 q = 1 做了 q 次)。值 q 是允许对手 ( A ) 满足 FP 条件的最小值。如果预采样预算 β = b · N 足够大(> √
摘要 — 本文介绍了 B RAIN F USE N ET,一种基于脑电图 (EEG) 与光电容积描记法 (PPG) 和加速度计 (ACC) 信号的传感器融合的新型轻量级癫痫检测网络,适用于低通道数可穿戴系统。B RAIN F USE N ET 利用灵敏度-特异性加权交叉熵 (SSWCE),这是一种结合了灵敏度和特异性的创新损失函数,可解决严重不平衡数据集的挑战。对于仅使用四个通道的基于 EEG 的分类,B RAIN F USE N ET - SSWCE 方法成功检测到 CHB-MIT 数据集上 93.5% 的癫痫发作事件(基于样本的灵敏度为 76.34%)。在 PEDESITE 数据集上,仅考虑 EEG 数据时,我们分别表现出基于样本的灵敏度和假阳性率 60.66% 和 1.18 FP/h。此外,我们证明,整合 PPG 信号可将灵敏度提高到 61.22%(成功检测到 92% 的癫痫发作事件),同时将假阳性数量降低到 1.0 FP/h。最后,当还考虑 ACC 数据时,对于基于样本的估计,灵敏度增加到 64.28%(成功检测到 95% 的癫痫发作事件),假阳性数量下降到仅 0.21 FP/h,而当考虑基于事件的估计时,每天的误报少于一次。BRAIN FUSE N ET 资源友好,非常适合在低功耗嵌入式平台上实施,我们
奶牛饮食中增加的草料比例(FP)会减少人类可食用食品的竞争并降低饲料成本,尤其是在低输入系统中。但是,增加FP会降低产生性,并可能增加甲烷(CH 4)发射参数。这项工作旨在研究FP和繁殖对饲料效率和CH 4排放参数的影响。在1992年至2010年之间在Agri-Food和Biosciences研究所进行的32个单个经验的数据在这项研究中被利用,导致来自796 Holstein-Friesian(HF),50名Norwegian Red(NR),46泽西HF(J HF)和16 NR HF HF牛的数据。饮食包括不同比例的草料和浓缩物,取决于每个实验的实验方案。线性混合模型用于研究低(LFP; 10%至30%),培养基(MFP; 30%至59%),高(HFP; 60%至87%)和纯净(对于; 100%)FP(; 100%)FP(干物质[DM]基础)以及对饲料的效率和4发射剂量识别剂量的纯种(干物质[DM]基础)和纯化(100%)FP(DRE)和多种饮食分析的效果。相同的变量。与HFP(15.3 kg/d)和(13.8 kg/d)相比,提供LFP(17.3 kg/d)和MFP(17.9 kg/d)的母牛的总干物质摄入量(DMI)更高(17.9 kg/d)(13.8 kg/d)(p <0.001)。与HFP相比,LFP和MFP的牛奶产量(P <0.001),牛奶产量/DMI(P <0.001),能量校正的牛奶(ECM)/DMI(P <0.001)和牛奶能量/DMI(P <0.001)较高。与MFP(22.4 g/kg)相比,HFP(24.3 g/kg)的甲烷/DMI高(24.3 g/kg)(p <0.001)。可能有机会改善浓缩物输入较少的较低强度农场的利润。与MFP相比,HFP(22.5或21.6 g/kg)和(27.0或25.8 g/kg)的甲烷/牛奶产量(P <0.001)或CH 4/ECM(P <0.001)高于MFP(19.1或17.9 g/kg)。LFP和MFP之间或HFP之间没有差异,以获得牛奶产量,牛奶产量/DMI,ECM/DMI,牛奶能量/DMI,CH 4/牛奶产量和CH 4/ECM(P> 0.05)。在残留饲料摄入量(P¼0.040),牛奶产量 /DMI(P¼0.041)和CH 4 /DMI(P¼0.048)之间存在差异,具有多变量冗余性分析,表明与CH 4 /DMI和CH 4 /DMI和CH 4 /CH 4 /CH 4 /CH 4 /CH 4 /CH 4 /CH 4 /CH 4 /CH 4 /dMI的差异分析表明。进食浓度的70%至90%的DMI(LFP组)不会导致生产率,喂养效率或CH 4的产量和强度的进一步好处,而饲料摄入41%至70%的DMI(MFP组)。©2025作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
在食品中观察到的有毒有机化合物的浓度升高对人类健康构成严重危险。天然和人工污染物都会引起食物污染。食品生产,包装,运输和存储的阶段也可能在很大程度上引起食品中不良物质的出现。摄入含有毒性污染物的食物的健康后果范围从轻度胃炎到功能失调的内部器官和神经系统综合症导致的死亡。世界卫生组织(WHO)为食品中这种化学物质的含量设定了建议,包括被认为是对人类消费安全的最低允许浓度。但是,必须控制化学污染物的食品。此外,需要快速,敏感和廉价的方法来在需求时检测它们。当前,免疫分析方法最广泛用于确定食物中的污染物。以竞争性格式开发荧光偏振免疫测定法(FPIA)方法是一种强大而现代的工具,用于检测各种矩阵中的有机分子,从而使FPIA方法对食品安全应用有用。由于可用于测量荧光偏振信号的便携式设备,因此可以在需要时使用FPIA方法。各种荧光标签和识别元素(受体,单克隆和多克隆抗体以及纳米体)允许荧光极化(FP)测定法检测有机物质的较低限制。FP分析是一种均匀,快速和定量的方法。开发各种FP测定格式使它们有望确定粮食污染物。本评论总结了2018 - 2023年在食品中检测有机污染物(农药,激素,毒素,抗生素和其他药物)的FP分析的出版物。此外,它证明了使用这种方法在需求点确定污染物的前景,并在食品安全检查期间检测高分子量物质,真菌和细菌感染的前景。
材料与方法:回顾性分析83例行显微手术切除涉及运动相关区域的脑动静脉畸形患者,利用TOF-MRA和DTI的人工智能技术计算4项人工智能指标,包括FN 5mm/50mm(距病灶边界5~50mm范围内的纤维数目比例)、FN 10mm/50mm(距病灶边界5~50mm范围内的纤维数目比例)、FP 5mm/50mm(距病灶边界5~50mm范围内的纤维体素点比例)、FP 10mm/50mm(距病灶边界5~50mm范围内的纤维体素点比例),采用单因素及多因素分析各指标与术后远期运动功能障碍的关系。使用最小绝对值收缩和选择算子回归与皮尔逊相关系数来选择最佳特征,以开发机器学习模型来预测术后运动缺陷。计算曲线下面积以评估预测性能。
对研究人员和从业人员来说,一个核心问题是知识管理策略(KMS)和信息技术(IT)策略一致性是否可以帮助获得竞争优势。为了解决这个问题,这项研究借鉴了信息战略一致性(ITSA),并经验研究了公司KMS与IT之间的关系。调查使用了部分最小二乘路径建模来检查225家巴西公司的经验数据,以测试此处提出的假设。调查结果表明,KMS对ITSA,IT使用的好处(BUTI),业务流程绩效(BPP)和公司绩效(FP)产生了重大的积极影响。结果表明,研究人员和从业人员应该超越对FP的直接影响,并确定如何利用KMS和ITSA来启用和支持BPP,从而有助于知识管理策略和IT业务价值文献。
目录 1 I. 修订历史 3 II. 制造商印记 3 1. 本手册的一般信息 4 1.1 信号词 4 1.2. 警告符号 5 1.3. 安全说明的结构 5 1.4. 信息符号 6 2. 安全 6 2.1. EG/EU 指令 6 2.2. 危险 6 2.3. 人员 6 2.4. 合理可预见的误用 7 2.5. 按预期用途使用 7 2.6. 保修和责任 7 2.7. 一般安全说明 8 3. 功能描述 10 3.1. 一般信息 10 3.2. 铭牌和名称 11 3.3. 交付范围 11 3.4. 技术数据 12 4. 运输和储存 13 4.1. 包装 13 4.2. 运输 13 4.3.存储 13 5. 安装 14 5.1. 准备 14 5.2. 机械安装 14 5.3. 安装高度 15 5.4. 安装 FP 125 OLED 16 5.5. 启动 19 6. 操作和设置 20 6.1. 一般信息 20 6.2. 菜单和显示信息 23 6.3. 使用激活和编程键进行操作 26 6.3.1. 打开和关闭 FP 125 OLED 28 6.3.2. 获取有关 FP 125 OLED 的信息 30 6.3.3. 执行快速检查 32 6.3.4. 设置操作模式和墨盒尺寸 34 6.3.4.1.操作模式设置润滑循环持续时间 37 6.3.4.2.操作模式设置排空时间 44 6.3.4.3.操作模式脉冲控制 51 6.3.5. 激活填充菜单 52 6.4. 显示屏上的错误和信息消息 54 6.5. 空液位警告 55
当今世界危机重重、挑战复杂,欧盟必须加强在研究与创新 (R&I) 方面的密切合作,以创造急需的知识,并为社会挑战提供强有力的、基于研究与创新的解决方案。此外,为了促进面向未来的知识和数据型经济的兴起,研究与创新应成为欧盟未来竞争力和单一市场战略的核心。此外,由于对欧盟战略自主权、安全和技术主权的担忧,研究与创新需要成为欧盟的战略政策领域。现行的框架计划 (FP) 及其前身已成为欧洲研究与创新政策的基石,提供卓越的科学和创新,增强欧盟的竞争力,培养人才,并通过应对社会挑战产生影响。但是,正如我们近年来所看到的,FP 的作用不仅限于提供研究与创新成果。FP 为维护和加强欧洲价值观及其作为自由、开放和基于价值观的市场经济的全球声誉做出了重大贡献。框架计划的欧洲附加值非常高,R&I 尤其受益于出色的跨国欧洲和国际合作与开放。此外,框架计划还促进了欧洲研究区 (ERA) 和“第五自由”的发展,因为它作为一种政策工具的重要性日益增加,它为 R&I 人才营造了有吸引力的工作环境,超越了其作为单纯的 R&I 资助计划的传统功能。本摘要涵盖了欧洲研究区和创新委员会 (ERAC) 的战略政策方向,以帮助制定下一个框架计划 (FP10)。全文和建议可在意见中找到。
在关键决策 (CD)-1 之前,该命令要求制定一份经批准的采购战略,其中包含一份高级主计划。2 该命令要求价值超过 5000 万美元的项目在 CD-2 之前采用符合 EIA-748(合同授予时的当前版本)的挣值管理系统 (EVMS),除非该项目是根据与 DOE 直接签订的固定价格 (FP) 合同执行的,或者该项目根据 DOE O 413.3B 获得批准的豁免。3 EIA-748 的准则 6 和 7 描述了项目进度表的作用以及剩余工作、哪些资源将执行工作以及项目在批准的 CD-4 日期之前需要完成工作的时间的规划和调度过程。项目 IMS 是资源加载的,并显示关键路径(在 DOE 和 P6 中也称为“最长路径”)。 4 资源加载的 IMS 包含所有成本,包括人员、劳动力、设施、材料和设备(视情况而定)的单价和数量,以完成所需的活动。对于 FP 合同,进度表将包括总合同成本。5
1 米兰理工大学化学、材料与化学工程系“Giulio Natta”,Via Mancinelli 7, 20131 米兰,意大利;filippo.pinelli@polimi.it(FP);fabio.pizzetti@polimi.it(FP);emilia.petillo@mail.polimi.it(EP)2 Mario Negri 农业研究所 IRCCS,Via Mario Negri 2, 20156 米兰,意大利;valeria.veneruso@marionegri.it 3 苏黎世应用技术大学(ZHAW)化学与生物技术研究所(ICBT)细胞生物学与组织工程中心,8820 Wädenswil,瑞士;ragh@zhaw.ch 4 瑞士南部大学(USI)生物医学科学学院,Via Buffi13, 6900 卢加诺,瑞士; giuseppe.perale@usi.ch 5 路德维希玻尔兹曼实验和临床创伤学研究所,Donaueschingenstrasse 13, 1200 Vienna,奥地利 * 通讯地址:pietro.veglianese@marionegri.it(波兰);filippo.rossi@polimi.it(法国);电话:+39-02-3901-4205(波兰);+39-02-2399-3145(法国)† 上述作者对本文的贡献相同。