当前研究中提出的MPA结构包括一个典型的贴片天线(图1a – d),其接地平面被跨表面吸收器结构取代(图1b – e)。它可能是潜在的RFID读取器,因为它不仅可以在正常的天线模式下运行,而且性能提高,而且还可以作为抑制散射的吸收器,这可以有效地减少多路径环境中RFID系统的错误读数。该贴片印在1毫米厚的廉价FR4环氧基底物上。由4x4单位细胞矩阵组成的元图吸收器结构。使用激光蚀刻机(LPKF Protolaser S4)来实现斑块和吸收器结构,如图1 d,e。总体MPA厚度仅为2.53毫米。
摘要 — 为了更好地预测功率转换器中晶体管的高频开关操作,必须准确评估这些器件的接入元件,如电阻和电感。本文报告了使用 S 参数对氮化镓 (GaN) 封装功率晶体管进行特性分析,以提取源自欧姆接触和封装的寄生效应。在封装晶体管时,使用在 FR4 印刷电路板 (PCB) 上设计的特定测试夹具设置校准技术,以便从测量的参数中获取晶体管平面中的 S 参数。所提出的方法基于改进的“冷 FET”技术和关断状态测量。它应用于市售的增强型 GaN HEMT(高电子迁移率晶体管)。将提取的寄生元件与器件制造商提供的参考值进行比较。还评估了结温对漏极和源极电阻的影响。最后,提出了这些寄生效应的电热模型。
电子封装的小型化是一个持续的趋势。制造商正在增加封装密度以适应更复杂的设计和更高的工作频率。表面贴装器件 (SMD) 和当今的制造工艺开始成为这种小型化的限制因素。这些问题的解决方案是嵌入式无源器件和新的全加成制造工艺。在这项工作中,使用称为顺序构建 - 共价键合金属化 (SBU-CBM) 的全加成工艺制造平面电感器。测试了一种用于 CBM 工艺的新嫁接材料,但在 FR4 基板上测试时发现它比以前使用的材料更差。发现高电感和高 Q 因数的平面电感器的最佳设计是圆形螺旋电感器。使用 SBU-CBM 工艺成功制造了特征尺寸为 75 µm 的平面圆形螺旋电感器。
摘要 本文设计了一种用于 5G(第五代)移动通信应用的双频微带贴片天线和天线阵列。5G 技术的先决条件是更高的数据速率、更高的效率、更高的增益、更宽的带宽和更紧凑的天线。Rogers RT/Duroid 5880 和 FR4 基板用于设计所提出的双频内嵌馈电微带贴片和天线阵列,分别在 28、39.5 GHz 和 29、49.8 GHz 的毫米波频率下产生谐振。双频单元件天线(Rogers)配备 8.057、7.337 dB 和 8×8 阵列天线,在 28 和 39.5 GHz 谐振频率下可获得 25.86、26.28 dB 的优异增益和 1.5、4.3 GHz 的良好阻抗带宽。此外,双频天线和阵列天线在两个频段均表现出较高的辐射效率和反射系数S11小于-10 dB。关键词:5G,RT / Duroid,嵌入式馈电,毫米波
3.4.1 安装位置 SGM70xx 模块设计用于放置在燃气表出口处。 3.4.2 SGM 模块上的网格 Sensirion 建议在燃气表出口(最好也在入口)安装网格,以防止大颗粒(例如螺钉或螺母)进入仪表外壳。 3.4.3 安装限制 在燃气表组装期间或之后,必须避免对 SGM70xx 模块造成机械应力。安装必须以保证恒定的燃气进气条件的方式进行。 3.4.4 安装方向 建议垂直安装,向上流动。连接器 PIN 朝向入口。也可以采用其他安装方向。有关更多信息,请联系 Sensirion。 3.5 SGM70xx 外壳材料 塑料:PBT(聚对苯二甲酸丁二醇酯) 3.6 接触液体的材料 SGM70xx 外壳材料(3.5 中定义) 玻璃(氮化硅、氧化硅) 硅 FR4 聚氨酯 (PUR) 环氧树脂 铜合金 尼龙、镀锡磷青铜、PBTP
独特功能 - 专有硅芯片 [CiS] 技术 - 硅(Si-wafer)通用封装 - 微型尺寸:2.55mm x 2.55mm x 0.6mm - 单色范围,公差严格:Mac Adams 6 - 同类最佳热阻:5,1 K/W - 适合在标准 FR4 - 和 MC - PCB 上组装,设计和指定用于 - 汽车外部和内部照明 - 汽车日间行车灯 - 医疗和牙科照明 - 运输设备内部照明(飞机、火车、船舶) - 应急灯具 - 手持电子设备(手机、PDA)的闪光灯 - LCD 显示器的背光光源 - 卤素灯的替代品 - 装饰和建筑照明 - 重点照明 - 高品质手电筒和娱乐灯 - 工业设备照明。CCT:5700K。光通量:60 流明。CRI > 75 (Ra8)。标准 SMT 组装。典型平均寿命*):> 50,000 小时 (T70)。ESD 耐压:2kV
摘要 近场电感耦合无线电力传输 (WPT) 系统已广泛应用于脑植入应用。然而,由于发射器 (TX) 和接收器 (RX) 线圈之间的不同变化会导致接收功率变化,因此高效可靠的电力传输具有挑战性。本文提出了一种利用负载移位键控的闭环自适应控制系统,该系统采用 0.5 lm 标准 CMOS 工艺设计,用于为植入负载提供所需的功率,以补偿这些差异。所提出的 TX 和 RX 线圈均采用 FR4 基板制造,尺寸分别为 10 9 10 mm 和 5 9 5 mm。通过改变功率放大器的电源电压,该自适应闭环系统调节发射功率,向负载提供 5.83 mW 的功率,这大约是阈值窗口的中点。该系统在空气和组织介质中分别实现了 8 毫米距离下的 9% 和 8% 的电力传输效率。初步结果表明,与开环模块相比,带有反馈回路的微型 WPT 模块在 TX 和 RX 线圈之间的 8 毫米距离下实现了 8% 和 3% 的效率提升。
摘要:本文介绍了一种微型标签天线,可用于 RFID UHF 美国频段、自由空间或金属环境中。所提出的天线印刷在单层 FR4 基板上,并首先设计为在自由空间中工作。π 匹配的形状使我们能够实现天线阻抗与芯片阻抗之间的良好匹配。CST 和 HFSS 中的模拟结果之间的对应关系促使我们制造了标签的原型。之后,我们在金属区域中模拟了所提出的天线,通过添加一个方形金属板并用泡沫层与天线隔开,以测试标签在此环境中的性能。优化程序使我们能够在金属环境中实现良好的性能。最后,我们测试了制造的标签的读取范围。我们获得了约 6.5m 的良好范围。我们提出的标签的最终设计结构简单,尺寸为 51×26,63×0.8 𝑚𝑚 3,与在 915 MH 谐振频率下工作的贴片天线的理论计算尺寸相比,减少了 88,64%。
E3A LABONR FKM12 NAVPETOFF FA6 NASLANT FKM13 SPCC FA7 NAVSTALANT FKN2 CBC FA10 SUBASELANT FKN3 OICC FA18 NAVPHIBASELANT FKN7 NEESA FA24 COMNAVBASELANT FKN10 NAVBBASELANT FKN10 NAVB11 NAVB71 NAVCIVENGRLAB FB10 NAVSTAPAC FKP1B WPNSTA FB13 SUBBASEPAC FKP1J NAVORDSTA FB21 NAVPHIBASEPAC FKP16 NAVSSES FB28 COMNAVBASEPAC FKR1A NAS FB30 NAVSHIPREPFAC FKP1B NAVBACV16 NAVBCV FKR3A NAVAIRENGCEN FB45 TRIREFFACPAC FR3 NASRESFOR FC3 COMNAVACTEUR FR4 NAF FC5 NAVSUPACTEUR FT6 NASCNET FC7 NAVSTAEUR FT9 NAVAVMUSEUM FC14 NASEUR FT13 NATTC FD4 OCEAN FCENST 2018华盛顿特区 FT31 NTC FF3 NAVSTACNO FT37 NAVSCOLCECOFF FF6 NAVOBSY FT38 NAVSUBTRACENPAC FF32 FLDSUPPACT FT39 NAVTECHTRACEN FF38 USNA FT55 NAVSCSCOL FF42 NAVPGSCOL V3 COMCABHOFTA F24 NAVSCOL FGAVMS NAVSCOL V5 MCAS FJA4 海军家园 V8 CG MCRD FKA8F5 SUBASE V16 CG MCB FKM9 NSC V23 CG MCLB
摘要:在这项工作中,我们介绍了基于谐振剂电感器(LC)被动电路的可重复使用的无线葡萄糖传感器的开发,该电路在低成本的FR4底物上明确制造。在我们的实验中,已利用具有不同浓度的葡萄糖/水溶液来评估所提出的结构的特征。获得的结果表明,制造的传感器在准确识别0.1 mm至100 mm的葡萄糖浓度方面的有效性。传感器的敏感性分别为0.1至0.9 mm,1至10 mm,1至10至100 mm的葡萄糖浓度范围为0.1至0.9 mm,1至10 mm,1至10 mm,1至10 mm,1至10 mm,1至10 mm,1至10 mm,1至0.9 mm,1至0.9 mM,为0.2709 MMM和0.2709 MHz/mm。传感器的检测极限(LOD)的葡萄糖范围为0.15 mm,范围为0.1至0.9 mm。尤其是在葡萄糖浓度范围内的敏感性最大变化,表明该传感器在检测较低的葡萄糖浓度方面特别有效。获得的特性表明该传感器适用于需要精确测量葡萄糖溶液的应用。
