新闻稿 Bay Materials 获得专利以保护创新型透明矫正器材料 Zendura™ FLX 美国加利福尼亚州弗里蒙特,2021 年 1 月 5 日:Bay Materials LLC 是正畸透明矫正器治疗(CAT)用高性能热成型塑料材料的领导者,今天宣布,美国专利商标局已批准并颁发了 Bay 的“双壳牙科器具和材料结构”系列专利的第二项专利。新专利 US 10,870,263 B2 于 2020 年 12 月 22 日颁发,有 34 项权利要求,涵盖热成型片材和正畸器具,是初始专利 US 10,549,511 B2 的补充,该专利于 2020 年 2 月 4 日颁发。“这些专利涵盖 Bay Materials Zendura TM FLX 矫正器材料,并验证了我们对先进热成型材料和正畸矫正器的创新方法”,Bay Materials 总经理兼创始人 Ray Stewart 博士说。 “这些专利增强了我们的竞争地位,保护了我们的研发投资,并有助于防止他人复制该材料。创新的专有双壳结构旨在为患者在佩戴过程中提供出色的舒适度和牙齿移动力,这就是 Zendura TM FLX 受到 Bay 的 Zendura Dental 业务运营所服务的矫正器生产客户的高度追捧的原因。” Bay Materials 是 Straumann 集团旗下的一家公司,为全球牙科和正畸行业提供先进的热塑性材料。除了是牙齿替换解决方案的全球领导者之外,Straumann 集团还是价值数十亿美元的透明矫正器解决方案和材料的全球供应商,该行业在全球范围内继续快速增长。凭借其长期的专业知识、宝贵的知识产权和富有吸引力的产品线,Bay Materials 是集团开发、制造和营销正畸和牙科热塑性塑料的卓越中心。
劳伦斯伯克利国家实验室,伯克利路1号,伯克利路1号,美国94720,美国B桑迪亚国家实验室,MS 1033,邮政信箱5800,新墨西哥州阿尔伯克基,87185,美国C Pacific Northwest National National Laboratory,P.O。Box 999,Richland,WA 99352,美国D Pacific Northwest Modeling,LLC,402 S Louisiana ST,肯尼维克,华盛顿州肯纳威市99336,美国E Lawrence Livermore国家实验室,P.O。 Box 808,M S-1 L-103,Livermore,CA 94551,美国F Los Alamos国家实验室,邮政信箱1663,Los Alamos,NM 87545,美国G爱达荷州国家实验室,1955年,弗雷蒙特大街,爱达荷州弗里蒙特大街,爱达荷州爱达荷州,ID 83415,美国H Mattson,5022。 83455,美国莱斯大学,地球,环境和行星科学系,大街6100号,MS-126,美国德克萨斯州休斯敦市,美国77005-1892,美国J South Dakota矿业与技术学院 地质与地质工程,拉皮德城,SD 57701,美国K TDOEGEO,5011 SOMERSET SE SE,BELLEVUE,WA 98006,美国,美国国家合作社,用于处置放射性废物 - Nagra - Nagra,Hardstrasse 73,邮箱,邮箱,COSTBOX,COSTBOX,CH-5430 WITTINGERICESS,CH-5430 WITTINGERICESS,GEOSCIERECENCE,GEOSCIE,GEOSCEN3,GEOSCIE CENDER,GEOSCIE中心德国波茨坦,布鲁克黑文国家实验室,布鲁克黑文大街734号,纽约州厄普顿市,美国11973,美国o桑福德地下研究机构,s summit St,铅,铅,SD 57754,美国P斯坦福大学PST 57754,美国P斯坦福大学能源科学与工程部,367 Panama striew,367 Panama strieth,br Brrecorcy and Enginesering,367 Panama streety,stary strieth,stan Friantration,stan Frarac 555505050505050. #185,美国加利福尼亚州帕洛阿尔托市,美国r斯坦福大学,地球物理学系,397巴拿马购物中心米切尔大楼,加利福尼亚州斯坦福大学,美国94305,美国S国家可再生能源实验室(NREL),15013 DENVER WEST PARKWAINBox 999,Richland,WA 99352,美国D Pacific Northwest Modeling,LLC,402 S Louisiana ST,肯尼维克,华盛顿州肯纳威市99336,美国E Lawrence Livermore国家实验室,P.O。Box 808,M S-1 L-103,Livermore,CA 94551,美国F Los Alamos国家实验室,邮政信箱1663,Los Alamos,NM 87545,美国G爱达荷州国家实验室,1955年,弗雷蒙特大街,爱达荷州弗里蒙特大街,爱达荷州爱达荷州,ID 83415,美国H Mattson,5022。 83455,美国莱斯大学,地球,环境和行星科学系,大街6100号,MS-126,美国德克萨斯州休斯敦市,美国77005-1892,美国J South Dakota矿业与技术学院地质与地质工程,拉皮德城,SD 57701,美国K TDOEGEO,5011 SOMERSET SE SE,BELLEVUE,WA 98006,美国,美国国家合作社,用于处置放射性废物 - Nagra - Nagra,Hardstrasse 73,邮箱,邮箱,COSTBOX,COSTBOX,CH-5430 WITTINGERICESS,CH-5430 WITTINGERICESS,GEOSCIERECENCE,GEOSCIE,GEOSCEN3,GEOSCIE CENDER,GEOSCIE中心德国波茨坦,布鲁克黑文国家实验室,布鲁克黑文大街734号,纽约州厄普顿市,美国11973,美国o桑福德地下研究机构,s summit St,铅,铅,SD 57754,美国P斯坦福大学PST 57754,美国P斯坦福大学能源科学与工程部,367 Panama striew,367 Panama strieth,br Brrecorcy and Enginesering,367 Panama streety,stary strieth,stan Friantration,stan Frarac 555505050505050. #185,美国加利福尼亚州帕洛阿尔托市,美国r斯坦福大学,地球物理学系,397巴拿马购物中心米切尔大楼,加利福尼亚州斯坦福大学,美国94305,美国S国家可再生能源实验室(NREL),15013 DENVER WEST PARKWAIN
在2024年8月28日至2024年12月12日,加利福尼亚州粮食和农业部(CDFA)之间,《地中海果实的宣告宣告紧急计划的修正案》证实,有70种成人地中海果蝇(Medflies),Ceratisitis Ceratitis capitata Capitata(Wiedemann)(Wiedemann)(Wiedemann)(Wiedemann)是弗雷曼(Countar)的Neward and and and and and and and and and and and and and and and and and and and and and and and and and and and and。此外,已经证实三种特性上的果树被幼体药物感染。基于这些检测,有害生物学,来自CDFA地中海果蝇科学咨询小组(MEDSAP),主要国家昆虫学家的信息以及CDFA的“地中海果蝇Ceratisis capitata(Wiedemann)的行动计划”,CDFA的结论是,CDFA的结论是,该地区的疾病是该地区的疾病。这种害虫对加利福尼亚的自然环境,农业和经济构成了重大,清晰和迫在眉睫的威胁。除非采取紧急行动,否则在阿拉米达和圣塔克拉拉县突然发现未来的发现很高。根据综合的害虫管理原则,CDFA评估了可能的根除方法,并确定没有可以消除该领域的Medflies的文化方法。这项紧急计划的宣告有效期至2025年8月15日,这是Medfly治疗方案要求执行MedFly三个生命周期的治疗计划所需的时间。CDFA将采用生物学和化学控制作为主要工具,并在有证据表明物业上存在繁殖种群时,还将通过宿主水果去除物理控制。对上述药物的检测需要立即采取行动,以应对对加利福尼亚自然环境,农业和经济的迫在眉睫的威胁。更具体地说,除了多种商业作物外,Medfly还威胁着对本地野生动植物,私人和公共财产以及食品供应的损失和损害。,由于2024年8月28日至2024年12月12日之间发现的Medflies的生命周期尚未发生,因此在阿拉米达和圣克拉拉县突然发现未来的检测可能很高。因此,秘书正在援引公共资源法第21080(b)(4)条,以立即采取紧急行动,以防止上述损失和对加利福尼亚资源的损失。Medfly侵扰的治疗计划将如下实施:
地中海果蝇紧急计划公告修正案 2024 年 8 月 28 日至 2024 年 12 月 18 日,加州食品及农业部 (CDFA) 确认,在阿拉米达县的弗里蒙特、纽瓦克和联合城共捕获了 71 只成年地中海果蝇 (Medflies) Ceratitis capitata (Wiedemann)。此外,三处土地上的果树已被确认受到地中海果蝇幼虫的侵扰。根据这些检测、害虫生物学、来自 CDFA 地中海果蝇科学咨询小组 (MedSAP) 的信息、州一级昆虫学家以及 CDFA 的“地中海果蝇 Ceratitis capitata (Wiedemann) 行动计划”,CDFA 得出结论,该地区存在地中海果蝇的侵扰。这种害虫对加州的自然环境、农业和经济构成了重大、明显和迫在眉睫的威胁。除非采取紧急措施,否则阿拉米达县和圣克拉拉县未来很有可能突然发现这种害虫。根据综合害虫管理原则,加州食品和农业部评估了可能的根除方法,并确定没有可用于从该地区消灭地中海果蝇的文化方法。此紧急计划公告有效期至 2025 年 8 月 15 日,这是根据地中海果蝇治疗方案的要求,在地中海果蝇的三个生命周期内实施治疗计划所需的时间。加州食品和农业部将采用生物和化学控制作为主要手段,并在有证据表明某处土地上存在繁殖种群时,通过移除寄主果实进行物理控制。发现上述地中海果蝇需要立即采取行动,以应对对加州自然环境、农业和经济的迫在眉睫的威胁。更具体地说,除了各种经济作物外,地中海果蝇还威胁着当地野生动物、私人和公共财产以及食品供应的损失和损害。由于在 2024 年 8 月 28 日至 2024 年 12 月 18 日期间发现的地中海果蝇的生命周期尚未结束,因此未来在阿拉米达县和圣克拉拉县突然发现地中海果蝇的可能性很高。因此,部长援引《公共资源法典》第 21080(b)(4) 条采取紧急行动,以防止上述损失和加州资源受损。地中海果蝇侵扰的治疗计划将按以下方式实施:
Jens 1(IEEE高级成员),Masoud Babaie 2(成员,IEEE),Joseph C. Bardin 3,4(高级成员,IEEE),Imran Bashir 5(IEEE,IEEE),Gerard Billiot 6,Elena Blokhina Blokhina Blokina Blokina Blokina Blokina 5,7,8(IEEE,IEEE,SHAIEE),SHAI CHIA,IEEE,IEEE,IE,IE,IE,IE,IE,IEEE,IE,IEEE,IE,IE,IE,IE。 Ini 11,12,Isaac L. Chuang 11,13,14,Carsten Degenhardt 15,Dirk Englund 11,Lotte Geck 15,16,LoïckLeGuevel 3,6 3,6(同胞,IEEE,IEEE),RUONAN HAN 14(IEEE,IEEE),MOHAMM I. I. I. I. I. I. I.14.14.14.14.14.18(I.14)(18岁) 6,Jeremy M. Sage 20,Fabio Sebastian 2(IEEE高级成员),Robert Bogdan Staszewski 7.8(同胞,IEEE),Jules Stuart 11,12,13,Andrei Vladimirescu 21(IEEE)(IEEE) 70049德国Stuttgart 2 Delft技术大学,2628 CD DELFT,荷兰3马萨诸塞州阿默斯特大学,马萨诸塞州阿默斯特,美国马萨诸塞州01003美国4 Google LLC,Goleta,CA 93117 USA 94536 USA 94536 USA 94536美国6 Grenoble Alps Universition of Grenoble Alps,Cea-nimerniver,cea-electricering firnicer,f-38000 grenoble france,frane frane frane frane frane frane frane frane frane,爱尔兰都柏林8等labs,爱尔兰都柏林4号。多伦多大学电气工程系,M5S 3G4,加拿大10écolePolytechnique de Lausne,2002年,瑞士Neuchâtel,瑞士Neology,剑桥,马萨诸塞州剑桥市12美国12林肯大学,马萨诸塞州林肯大学林肯大学,马萨诸塞州马萨诸塞州,马萨诸塞州02139美国15个电子系统(EZEA-2),中央工程研究所,电子和分析学院,52428 CH,德国16电气工程和信息技术学院,RWTH AACHEN UNIVERPON伊萨卡,纽约州14853美国19个州关键实验室,科学与技术学院,科学技术学院。
图 38. 怀俄明州 2500 年概率加速度图 ...................................................................................................... 94 图 39. 2011 年 2 月新西兰克赖斯特彻奇地震的液化影响 ........................................................................ 96 图 40. 怀俄明州的潜在液化区域 ............................................................................................................. 97 图 41. 液化暴露 ............................................................................................................................. 98 图 42. 怀俄明州 1930 – 2004 年地震活动,震级 5.0 及以上 ............................................................................. 100 图 43. 来自当地灾害缓解计划风险评估的地震风险排名 ............................................................................. 102 图 44. 地震情景震中 ............................................................................................................. 105 图 45. 各县 2500 年概率地震情景损失........................................................... 108 图 46. 地震危险区的人口增长率和可开发土地 .............................................................................. 122 图 47. 膨胀土对人行道和街道造成的损坏 ........................................................................................ 125 图 48. 粘土对比 ............................................................................................................................. 126 图 49. 非常干燥条件下的膨胀土会导致干裂 ...................................................................................... 126 图 50. 怀俄明州的膨胀土 ............................................................................................................. 127 图 51. 土壤膨胀潜力 ............................................................................................................................. 128 图 52. Thomas Edgar 的怀俄明州膨胀土地图 ............................................................................................. 129 图 53. 建筑物暴露于缩胀粘土 ............................................................................................................. 131 图 54. 2007 年 7 月 24 日,瑟莫波利斯的大角河1923. ........................................................................... 134 图 55. 1% 年概率洪灾灾害 .............................................................................................. 135 图 56. 1960-2012 年各县洪灾事件及损失 .............................................................................. 138 图 57. 1983 年林肯县洪灾 ............................................................................................................. 139 图 58. 夏延,靠近 Carlson St.,2008 年 8 月,路缘和排水沟洪灾 ............................................................. 139 图 59. 营地洪灾,2008 年 6 月 ............................................................................................................. 140 图 60. 凯西以西 Middle Fork Powder River 的山洪暴发 ............................................................................... 141 图 61. 2010 年 6 月弗里蒙特县洪水登陆“沙箱” .............................................................................. 141 图 62. 2011 年 6 月全州洪水 – 筑堤和装沙袋 .............................................................................. 142 图 63. 夏延市首都大道上的洪水,1896 年 7 月 15 日......................................................................................... 143 图 64. 根据当地灾害缓解计划风险评估得出的洪水风险等级 ......................................................................... 145 图 65. 1% 年度洪灾总建筑物损失估计 ............................................................................................. 149 图 66. 1% 年度概率洪灾危险区,卡斯珀、夏延、吉列、拉勒米 ............................................................................................. 150 图 67. 2010 年至 2030 年洪灾危险区可开发土地与人口增长率的交集........................................................................................................................................................... 151 图 68. 1% 年发生概率洪水灾害中的州资产 ........................................................................................................ 152 图 69. 2011 年 Carbon 县的洪水 ........................................................................................................................ 154 图 70. 2010 年 8 月 Ten Sleep 的冰雹灾害 ............................................................................................................. 156 图 71. 1960-2012 年各县的冰雹事件和损失 ............................................................................................. 158 图 72. 1985 年夏延的冰雹 ............................................................................................................................. 160 图 73. 2008 年 6 月 16 日的冰雹 ............................................................................................................................. 161 图 74. 根据当地灾害缓解计划风险评估得出的冰雹风险排名 ............................................................................................. 163 2011)...................................................................... 165........................................................................................... 151 图 68. 1% 年发生率洪灾风险下的州资产 .............................................................................................. 152 图 69. 2011 年 Carbon 县洪灾 ................................................................................................................ 154 图 70. 2010 年 8 月 Ten Sleep 的冰雹灾害 ............................................................................................. 156 图 71. 1960-2012 年各县的冰雹事件和损失 ............................................................................................. 158 图 72. 1985 年夏延的冰雹 ............................................................................................................. 160 图 73. 2008 年 6 月 16 日的冰雹 ............................................................................................................. 161 图 74. 根据当地灾害缓解计划风险评估得出的冰雹风险等级 ............................................................................. 163 图 75. 阿尔派恩和杰克逊之间的山体滑坡(2011 年春季) ................................................................... 165........................................................................................... 151 图 68. 1% 年发生率洪灾风险下的州资产 .............................................................................................. 152 图 69. 2011 年 Carbon 县洪灾 ................................................................................................................ 154 图 70. 2010 年 8 月 Ten Sleep 的冰雹灾害 ............................................................................................. 156 图 71. 1960-2012 年各县的冰雹事件和损失 ............................................................................................. 158 图 72. 1985 年夏延的冰雹 ............................................................................................................. 160 图 73. 2008 年 6 月 16 日的冰雹 ............................................................................................................. 161 图 74. 根据当地灾害缓解计划风险评估得出的冰雹风险等级 ............................................................................. 163 图 75. 阿尔派恩和杰克逊之间的山体滑坡(2011 年春季) ................................................................... 165
图 38。怀俄明州 2500 年概率加速度图 .............................................................................. 94 图 39。2011 年 2 月新西兰克赖斯特彻奇地震的液化影响 ........................................................ 96 图 40。怀俄明州的潜在液化区域 ............................................................................................. 97 图 41。液化暴露 ............................................................................................................. 98 图 42。怀俄明州地震活动 1930 – 2004,震级 5.0 及以上 ............................................................. 100 图 43。来自当地灾害缓解计划风险评估的地震风险排名 ............................................................. 102 图 44。地震情景震中 ................................................................................................................ 105 图 45。各县 2500 年概率地震情景损失 ................................................................................ 108 图 46。地震危险区的人口增长率和可开发土地 ............................................................................. 122 图 47。膨胀土对人行道和街道造成的损坏 ............................................................................. 125 图 48。粘土比较 ............................................................................................................................. 126 图 49。非常干燥条件下的膨胀土会导致干裂 ............................................................................. 126 图 50。怀俄明州膨胀土 ............................................................................................................................. 127 图 51。土壤膨胀潜力 ................................................................................................................................ 128 图 52。托马斯·埃德加的怀俄明州膨胀土地图 ................................................................................................ 129 图 53。建筑物暴露于收缩膨胀粘土 ...................................................................................................... 131 图 54。1923 年 7 月 24 日,瑟莫波利斯的 Big Horn 河。......................................................................................... 134 图 55。1% 年概率洪水灾害 ............................................................................................................. 135 图 56。1960-2012 年各县的洪水事件和损失 ............................................................................................. 138 图 57。林肯县洪水,1983 年 ...................................................................................................................... 139 图 58。夏延,靠近卡尔森街,2008 年 8 月,路缘和排水沟洪水 ...................................................................... 139 图 59。营地洪水,2008 年 6 月 ............................................................................................................. 140 图 60。凯西以西中叉粉河的山洪暴发 ............................................................................................. 141 图 61。2010 年 6 月弗里蒙特县洪水登陆者“沙箱” ............................................................................. 141 图 62。2011 年 6 月全州洪水 - 筑堤和装沙袋 ............................................................................. 142 图 63。首都大道洪水,夏延,1896 年 7 月 15 日..................................................... 143 图 64。来自当地灾害缓解计划风险评估的洪水风险排名........................................................ 145 图 65。1% 年度洪水灾害总建筑物损失估计........................................................................ 149 图 66。1% 年度概率洪水灾害区,卡斯珀、夏延、吉列、拉勒米............................................. 150 图 67。2010-2030 年洪水灾害区可开发土地与人口增长率的交集............................................................................................................................. 151 图 68。1% 年度概率洪水灾害中的国家资产............................................................................................. 152 图 69。2011 年 Carbon County 的洪水 ...................................................................................................... 154 图 70。2010 年 8 月 Ten Sleep 的冰雹损失 ............................................................................................. 156 图 71。1960-2012 年各县的冰雹事件和损失 ...................................................................................... 158 图 72。1985 年夏延的冰雹 ............................................................................................................. 160 图 73。2008 年 6 月 16 日的冰雹 ............................................................................................................. 161 图 74。来自当地灾害缓解计划风险评估的冰雹风险排名 ............................................................................. 163 图 75。阿尔派恩和杰克逊之间的山体滑坡(2011 年春季)................................................................ 165
作为生态旅游的生态意识专家,我专注于保护我们环境的可持续实践。今天,我想强调电动汽车(EV)行业的关键方面:特斯拉矿产供应链的环境影响。特斯拉的电池材料供应商中有十分之四的位于中国,该供应商在EV销售和生产中占主导地位。一些主要供应商包括Ganfeng Lithium Co.,Glencore for Cobalt,Modine Manufacturing Co.,用于电池冷却器以及用于特种材料的Rohm and Haas Company。特斯拉使用各种原材料制造其车辆,包括铝土矿铝,钛和硼钢用于车身和底盘。感应电动机主要由钢和铜组成。锂和石墨是特斯拉电池中必不可少的组成部分。Ganfeng Lithium已与特斯拉签署了为期三年的供应协议,而Syrah来源来自莫桑比克,并正在路易斯安那州建造一家工厂,以生产活跃的阳极材料。这些矿物质的提取和加工会损害环境。锂和钴开采可能是能源密集型的,有助于空气污染,土地退化和水污染。对特斯拉及其供应商来说,采用负责任和可持续的采矿实践以最大程度地减少这种影响至关重要。可持续旅游业在通过促进环保计划和鼓励可持续供应链管理来减轻行业等行业等行业的环境影响方面起着至关重要的作用。1。电动汽车更适合环境?2。特斯拉电池如何处置?是的,它们的碳足迹比汽油汽车较小,并且产生零尾管排放。处置锂离子电池需要仔细处理以防止重金属污染和环境伤害。应实施回收和适当的处理方法。3。特斯拉是否为其车辆使用可持续能源?特斯拉的增压器利用了包括太阳能和风能在内的可再生能源混合。但是,有些位置仍然依赖于不可再生能源。4。特斯拉可以采取哪些步骤来减少其矿产供应链的环境影响?特斯拉可以与供应商紧密合作,以确保负责任的采矿实践,促进回收计划并探索替代材料。实施可持续实践对于减少环境影响至关重要。确保整个供应链的严格可持续性标准可以帮助最大程度地减少伤害。可持续旅游业还可以通过促进环保旅行和支持电动汽车等行业来发挥作用来发挥作用,以采用环境友好的做法。政府已经建立了法规,例如负责的矿产倡议,以确保负责的采矿和矿产采购。消费者可以通过从制造商那里购买优先级可持续性,采用环保驾驶习惯并利用可再生能源来收费来支持可持续的电动汽车生产。特斯拉致力于通过制造零排放车辆,投资电池技术进步并利用可再生能源来减少碳排放。特斯拉的目标是在内华达州的Gigafactory中提高美国电池电池的产生,但时间表尚不清楚。中国市场在公司的整体生产策略中起着重要作用。在上海,特斯拉专门为当地市场生产车辆,并计划很快扩大该工厂,使其成为世界上最大的汽车出口枢纽。附近,CATL电池工厂接近其在特斯拉上海工厂以南的新工厂的建成,预计将显着增强电池的产量和特斯拉在中国的存在。电池组的组装涉及将每辆车的数千台电池组合在一起。,尽管一些基于美国的Gigafactories组装了大部分电池组,包括内华达州的位置,但特斯拉计划很快就开始生产自己的电池,从而使其能够提高竞争对手的效率。电动电池的原材料采购至关重要且昂贵,占最终成本的50%。关键组成部分包括锂,铝,钴,石墨,锰和镍,通常来自美国,阿根廷,澳大利亚,智利,中国,加拿大,刚果民主共和国,刚果,印度尼西亚,菲律宾,俄罗斯,俄罗斯和南非等国家。钴由于地理上的有限而尤其具有挑战性。石墨开采主要发生在中国,全球生产的三分之二来自该国。Panasonic作为特斯拉的主要电池制造商,依靠日本的工程师来开发和制造过程。随着计划扩大其运营的计划,特斯拉旨在提高电池生产能力并巩固其在快速增长的电动汽车市场中的地位。特斯拉的电池开发:一个复杂的供应链特斯拉依靠松下和CATL来满足其大部分电池需求,但该公司还在加利福尼亚州弗里蒙特(Fremont)拥有一家试点工厂,以提高生产效率。LG Energy Solutions向特斯拉提供了组件,而计划将Gigafactories扩展到欧洲,最初是在德国柏林。
Lam Research、Entegris、Gelest 联手推进 EUV 干光刻胶技术生态系统 2022 年 7 月 12 日 该合作为采用突破性技术的全球芯片制造商提供强大的化学品供应链,并支持下一代 EUV 应用的研发 旧金山,2022 年 7 月 12 日 /美通社/ -- SEMICON WEST 2022 -- Lam Research Corp. (NASDAQ: LRCX)、Entegris, Inc. (NASDAQ: ENTG) 和三菱化学集团旗下公司 Gelest, Inc 今天宣布达成战略合作,该合作将为全球半导体制造商提供可靠的前体化学品,用于 Lam 突破性的极紫外 (EUV) 光刻胶干光刻胶技术,这是生产下一代半导体的创新方法。 双方将共同致力于 EUV 干光刻胶技术研发,用于未来几代逻辑和 DRAM 产品,帮助实现从机器学习和人工智能到移动设备的一切。强大的工艺化学品供应链对于 EUV 干光刻胶技术融入大批量生产至关重要。这项新的长期合作进一步拓宽了干光刻胶技术不断发展的生态系统,并将提供来自半导体材料领导者的双源供应,确保在全球所有市场持续交付。此外,Lam、Entegris 和 Gelest 将共同努力,加速开发未来具有成本效益的 EUV 干光刻胶解决方案,用于高数值孔径 (high-NA) EUV 图案化。高 NA EUV 被广泛视为未来几十年器件持续缩小和半导体技术进步所需的图案化技术。干光刻胶提供高蚀刻抗性和可调节的沉积和开发厚度缩放,以支持高 NA EUV 降低的焦深要求。Lam Research 执行副总裁兼首席技术官 Rick Gottscho 表示:“干光刻胶技术是一项突破,它打破了使用 EUV 光刻技术扩展到未来 DRAM 节点和逻辑的最大障碍。” “此次合作将 Lam 的干光刻胶专业知识和尖端解决方案与两家行业前体化学品领导者的材料科学能力和值得信赖的供应渠道结合在一起。干光刻胶生态系统的这一重要扩展为该技术令人兴奋的新水平创新和大批量生产铺平了道路。”干光刻胶最初由 Lam 与 ASML 和 IMEC 合作开发,它提高了 EUV 光刻的分辨率、生产率和良率,从而解决了与创建下一代 DRAM 和逻辑技术相关的关键挑战。它提供了卓越的剂量与尺寸和剂量与缺陷率性能,从而提高了 EUV 扫描仪的生产率并降低了拥有成本。此外,Lam 的干光刻胶工艺比传统光刻胶工艺消耗更少的能源,原材料消耗减少五到十倍,从而提供了关键的可持续发展优势。“Lam 的干光刻胶方法体现了材料层面的关键创新,并提供了广泛的优势,包括更好的分辨率、更高的成本效益和令人信服的可持续发展优势,”Entegris 首席执行官 Bertrand Loy 表示。“我们很自豪能够成为这一创新合作的一部分,以加速干光刻胶的采用,并成为客户值得信赖的工艺材料供应商,帮助他们利用这一重要技术创造下一代半导体。”“我们与 Lam 和 Entegris 合作推进 EUV 光刻的干光刻胶,表明我们致力于支持芯片制造商在材料科学方面的创新,”三菱化学集团旗下公司 Gelest 总裁 Jonathan Goff 表示。“我们看到 EUV 近年来展现出非凡的价值,我们很高兴成为不断发展的生态系统的一部分,以扩大其潜力。”关于 Lam Research Lam Research Corporation 是一家为半导体行业提供创新晶圆制造设备和服务的全球供应商。 Lam 的设备和服务使客户能够制造更小、性能更好的设备。事实上,如今几乎每款先进芯片都是采用 Lam 技术制造的。我们将卓越的系统工程、技术领导力和强大的价值观文化与对客户的坚定承诺相结合。Lam Research (Nasdaq: LRCX) 是一家财富 500 强® 公司,总部位于加州弗里蒙特,业务遍布全球。了解更多信息,请访问 www.lamresearch.com (LRCX-T)“关于 Lam Research Lam Research Corporation 是面向半导体行业的创新晶圆制造设备和服务的全球供应商。Lam 的设备和服务使客户能够制造更小、性能更好的设备。事实上,如今几乎每个先进芯片都是采用 Lam 技术制造的。我们将卓越的系统工程、技术领导力和强大的价值观文化与对客户的坚定承诺相结合。Lam Research (Nasdaq: LRCX) 是一家财富 500 强® 公司,总部位于加利福尼亚州弗里蒙特,业务遍布全球。了解更多信息,请访问 www.lamresearch.com (LRCX-T)“关于 Lam Research Lam Research Corporation 是面向半导体行业的创新晶圆制造设备和服务的全球供应商。Lam 的设备和服务使客户能够制造更小、性能更好的设备。事实上,如今几乎每个先进芯片都是采用 Lam 技术制造的。我们将卓越的系统工程、技术领导力和强大的价值观文化与对客户的坚定承诺相结合。Lam Research (Nasdaq: LRCX) 是一家财富 500 强® 公司,总部位于加利福尼亚州弗里蒙特,业务遍布全球。了解更多信息,请访问 www.lamresearch.com (LRCX-T)
为防止糖尿病的发展,避免加剧前糖尿病的食物至关重要。诸如精制碳水化合物,甜谷物和加工肉类等食物增加了2型糖尿病和心脏病的风险。当血糖水平高于正常水平高但不足以分类为2型糖尿病时,就会发生糖尿病前期。通过改变生活方式的改变,包括饮食改造,例如避免某些食物,可以将血糖水平降低至健康范围。具有高血糖指数的精制碳水化合物被迅速消化,并导致血糖水平迅速增加。这些碳水化合物,包括白面包,米饭和面粉,缺乏纤维和必需的营养,导致食用后不久饥饿。饮食中高的碳水化合物的饮食增加了2型糖尿病,高血压和心脏病的风险。相反,应选择像全谷物,淀粉蔬菜,豆类和豆类等复杂的碳水化合物,因为它们的纤维较高并更慢地消化,提供持久的能量和饱腹感。甜糕点和甜点,高含糖,饱和脂肪和卡路里的高含量,由于它们与肥胖,2型糖尿病,炎症和心脏病的联系,应适度消耗。更健康的甜点选择包括新鲜的水果,搭配格兰诺拉麦片,全谷物吐司搭配坚果黄油和深色巧克力覆盖的杏仁。含糖的饮料是添加糖的主要来源,应由低糖选择取代,例如白糖,未加糖的茶或无糖调味水,以降低2型糖尿病,心脏病和中风的风险。1。而不是含糖饮料,选择茶,不添加糖的闪闪发光或低糖果汁。在谷物方面,请注意,热和冷甜味的选择通常很低,含糖量较高。取而代之的是,选择少于5克糖和至少3克纤维的全麦谷物,并在上面放上浆果,坚果或Chia种子,以增加营养。健康的早餐替代品包括带有火鸡香肠的炒鸡蛋,带有浆果的希腊酸奶,带鸡蛋的鳄梨吐司以及带坚果和新鲜水果的干酪碗。限制您对饱和脂肪的摄入,这可以降低胰岛素敏感性并有助于糖尿病的发展,并增加胆固醇水平和心脏病风险。取而代之的是,在鳄梨,脂肪鱼,橄榄油,花生酱,坚果和种子中发现了适量的健康单不饱和和多不饱和脂肪。加工的肉类,如培根,香肠和午餐肉的饱和脂肪和钠往往很高,并且与2型糖尿病,心脏病和癌症的风险增加有关。考虑将其代替植物性蛋白质来源,例如坚果,种子,小扁豆,无皮肤家禽和海鲜。在水果方面,最好的选择是最好的,因为干燥可以浓缩营养和糖含量。食用干果时要注意份量,并考虑避免使用糖尿病前期的血糖指数高的水果。未加糖的希腊酸奶是一种健康的零食选择,但要警惕含糖的浇头和调味料。上面放有坚果,种子和浆果,以增加风味。糖尿病前饮食需要平衡碳水化合物和蛋白质,以防止血糖峰值。希腊酸奶是一个不错的选择,糖和碳水化合物比传统酸奶少。还可以提供由杏仁,大豆或椰奶制成的低糖非奶油酸奶。由于碳水化合物含量高和血糖指数限制了炸薯条,这会导致血糖迅速升高。炸食品每周消耗3次,将2型糖尿病的风险增加近19%。选择烤的地瓜,欧洲防风草或小扁豆代替炸薯条。尝试脆皮羽衣甘蓝片,烤西葫芦,胡萝卜或绿豆“薯条”作为替代品。这些食物不会引起血糖峰值。烘烤炸薯条,与健康的脂肪和蛋白质配对也可以帮助保持血糖稳定。通过调味品改善食品风味对于糖尿病前饮食至关重要。但是,一些沙拉调味料和调味品,例如番茄酱,烧烤酱,蜂蜜芥末和法式调味料,含有高钠,碳水化合物,脂肪和卡路里。由于添加糖,许多无脂肪的敷料比常规版本多。选择用橄榄油,鳄梨油或其他醋制成的油性沙拉敷料是一种更健康的选择。而不是使用高糖果酱和果冻,而是制作低糖果酱或使用无糖果冻。用全谷物,健康脂肪,瘦蛋白,水果,蔬菜和豆类代替精制的碳水化合物,糕点,甜谷物和含糖饮料可以帮助管理血糖水平。匹兹堡,Papennsylvania 2。格林斯伯勒,NCNORTH CAROLINA 3。檀香山,hihawaii 8。美国的一些城市被列为有糖尿病前期的人,包括南卡罗来纳州的查尔斯顿;新泽西州帕特森;加利福尼亚州兰开斯特;田纳西州默弗里斯伯勒;加利福尼亚州圣罗莎;俄勒冈州尤金;路易斯安那州什里夫波特;田纳西州克拉克斯维尔;卡里,北卡罗来纳州;塞勒姆,俄勒冈州;弗吉尼亚州纽波特新闻;田纳西州查塔努加;俄亥俄州阿克伦;普罗维登斯,罗德岛;佛罗里达州塔拉哈西;亚利桑那州皮奥里亚;南达科他州苏福尔斯;纽约扬克斯;北卡罗来纳州费耶特维尔;纽约罗切斯特;得克萨斯州麦金尼;加利福尼亚州莫雷诺谷;加利福尼亚州弗里蒙特;德克萨斯州弗里斯科;华盛顿斯波坎;爱达荷州博伊西;佛罗里达州圣露西港;得克萨斯州欧文;温斯顿·塞勒姆(Winston-Salem),北卡罗来纳州;佛罗里达州圣彼得堡;德克萨斯州拉雷多;新泽西州泽西市;纽约布法罗;和密苏里州圣路易斯;亚利桑那州钱德勒;北卡罗来纳州达勒姆;内布拉斯加州林肯。圣保罗,Mnminnesota 4。 Newark,NJNew Jersey 5。 列克星敦,肯塔基6。 Stockton,Cacalifornia 7。 克利夫兰,俄亥俄州9。 阿灵顿,TXEXAS 10。 奥克兰,卡卡利尼亚11。 长滩,卡卡利尼亚12。 Raleigh,Ncnorth Carolina 13。 奥马哈,内内布拉斯加州14。 科罗拉多斯普林斯,cocolorado 15。 弗雷斯诺,cacalifornia 16。 Albuquerque,NMNEW墨西哥17。 孟菲斯,tntennessee 18。 华盛顿特区,华盛顿特区19。 拉斯维加斯,nvnevada 20。 西雅图,Wawashington圣保罗,Mnminnesota 4。Newark,NJNew Jersey 5。列克星敦,肯塔基6。Stockton,Cacalifornia 7。克利夫兰,俄亥俄州9。阿灵顿,TXEXAS 10。奥克兰,卡卡利尼亚11。长滩,卡卡利尼亚12。Raleigh,Ncnorth Carolina 13。 奥马哈,内内布拉斯加州14。 科罗拉多斯普林斯,cocolorado 15。 弗雷斯诺,cacalifornia 16。 Albuquerque,NMNEW墨西哥17。 孟菲斯,tntennessee 18。 华盛顿特区,华盛顿特区19。 拉斯维加斯,nvnevada 20。 西雅图,WawashingtonRaleigh,Ncnorth Carolina 13。奥马哈,内内布拉斯加州14。科罗拉多斯普林斯,cocolorado 15。弗雷斯诺,cacalifornia 16。Albuquerque,NMNEW墨西哥17。孟菲斯,tntennessee 18。华盛顿特区,华盛顿特区19。拉斯维加斯,nvnevada 20。西雅图,Wawashington西雅图,Wawashington