• 最先进的多实验室(~20)研究设施,旨在促进合作 • 关闭但分开“爆炸”和“惰性”设施,以平衡安全性、并发操作和最大化交互。• 正在进行的爆炸操作的实时人员通知代表性能力和设备: • 含能材料的结构-性能关系: • 能量的小尺度灵敏度、热、化学和物理特性 • 军械材料的准静态、动态和高重力加载;
“建立——国防部长应建立制造技术计划,通过开发和应用先进的制造技术和工艺来进一步实现本标题第 4811(a)节的国家安全目标,这将降低国防武器系统的采购和可保障性成本并减少此类系统在整个生命周期内的制造和维修周期。”
• 需要光束组合以进一步提高功率 • HP 工业光纤激光器:带宽(~5-10nm)-> 不可光束组合;或多模光纤(强度降低)-> 光束质量 (BQ)/亮度较差 • 可光束组合光纤:需要窄线宽和单模 BQ
ACE 可负担清洁能源规则 BSER 最佳减排系统 Btu 英热单位 CAA 清洁空气法案 CBI 机密商业信息 CCS 碳捕获和封存/储存 CCUS 碳捕获、利用和封存/储存 CO 2 二氧化碳 DER 分布式能源 DOE 能源部 EEA 能源紧急警报 EGU 发电机组 EIA 能源信息署 EJ 环境正义 EO 行政命令 EPA 环境保护署 FEED 前端工程和设计 FGD 烟气脱硫 FR 联邦公报 GHG 温室气体 GW 吉瓦 GWh 吉瓦时 HAP 有害空气污染物 HRSG 热回收蒸汽发生器 IIJA 基础设施投资和就业法案 IRC 国内税收法典 kg 公斤 kWh 千瓦时 LCOE 平准化电力成本 LNG 液化天然气 MATS 汞和空气毒物标准 MMBtu/h 百万英热单位每小时 MMT CO 2 e 百万公吨二氧化碳当量 MW 兆瓦 MWh 兆瓦时NAAQS 国家环境空气质量标准 NESHAP 国家有害空气污染物排放标准 NGCC 天然气联合循环
在路线护理研究概述概述作者:Tamara Averett-Brauer博士(C),MN,RN,高级健康科学家/护士研究员Air&Space Biosciences部,ENROUTE CARE部门(RHBAM)人类效能局,第711届人类绩效机翼,AFRL描述:本届会议介绍了711T人类绩效的概述,该研究对711T人类绩效进行了研究。讨论:伟大的权力竞争和未来的同伴/近点参与使人遭受压倒性伤亡的风险,撤离的能力受到严重约束或有限的能力。在路线护理研究产品领域的作用是开发和过渡航空医学疏散(AE)和路线护理(ERC)科学和技术进入知识和材料产品,从而促进受伤或不良服务成员的恢复和恢复,从伤害或不良的服务恢复到确定性护理。三线努力捕获投资组合工作:1。旨在定义,开发和提供新的范式的患者运动的自主护理,以提供AE护理而没有人类临床互动; 2。对患者运动的优化,该运动将通过建模和模拟扩展ERC护理提供者,从而揭示改进的护理模型,策略,团队,培训和设备的优先级;和3。敏捷战斗就业中的地面医疗运营将为您的经营分类,战斗人员护理和远征医学提供信息,并改善严重/长期护理的远征医学。“未来的操作要求要求临床敏锐和操作声音传单。因此,必须开发具有广度和深度知识的AE专家(ERC)系统”(航空医学疏散飞行护士职业指南,2023年)。在应对这一挑战时,提出了一项研究:美国空军飞行护理专业知识:定性探索性描述性研究。将讨论用于教育/培训,实践和政策的研究和翻译的含义。
该项目的更大目标是创建一个实时汗液传感器,可供国防部 (DoD) 和商业部门使用,因为它对全世界的战士和运动员都有好处。然而,这并不是这项专利的初衷。该团队申请这项专利是为了保护知识产权 (IP),因为他们知道他们的研究结果可能会带来更多专利。事实证明,这是正确的决定。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
wen.zhu@baesystems.com (603) 885-5681 关键词:氮化镓 (GaN)、Ka 波段、MMIC、PAE 摘要 本文报告了 AFRL 的 4 英寸 140nm GaN-SiC 技术向 BAE 系统微电子中心 (MEC) 代工厂的转移和生产实施情况。我们将 AFRL 和 BAE 系统 GaN-SiC 的最佳技术集成到用于 Ka 波段和 Q 波段的 6 英寸 140nm GaN-SiC 生产工艺中,这是业界首个 6 英寸 140nm GaN-SiC 生产工艺。本文介绍了脉冲 IV (pIV)、FET 负载牵引、MMIC 性能和可靠性结果。 引言 2018 年,BAE 系统的 MEC 代工厂与 AFRL 合作,将 140nm 4 英寸 GaN-SiC 技术转移到 6 英寸 GaN-SiC。该计划的关键技术目标是通过转移和整合 AFRL 开发的关键工艺技术[1, 2]以及 BAE 系统现有的 GaN MMIC 工艺和能力,在位于新罕布什尔州纳舒厄的 BAE 系统代工厂建立一流的 140nm 氮化镓 (GaN) 生产技术,以实现 6 英寸 SiC 上 GaN 的高性能、高 MRL 工艺[3]。通过这项短栅极高效氮化镓 (GaN) 单片微波集成电路 (MMIC) 可生产性计划,BAE 系统正在满足美国国防部 (DoD) 的迫切需求,即建立一个可供美国国防界使用的开放式 GaN 代工厂,并提供先进的 GaN MMIC 工艺。开放式代工服务 - BAE 系统 BAE 系统 III-V 族化合物半导体代工厂是一项战略资产,可为其电子系统部门提供独特的 MMIC 技术。为美国国防部提供代工服务是为了更有效地利用我们代工厂的产能,锻炼和改进工艺,并加强与国防部外部供应商和政府机构的关系。完成 GaN 生产向 6 英寸晶圆直径的过渡是 140nm 技术活动下的一项关键任务。仅此一项就能将有效代工能力提高 2 倍以上。BAE Systems 目前正在投资其代工厂,更换工具,消除单点故障,同时满足生产需求。
纳米抗体是一种非常规形式的抗体。虽然纳米抗体具有与常规抗体相似的一些功能,但其结构不同。常规抗体是由两个功能单元(称为 VH 和 VL)组成的大型复杂蛋白质,而纳米抗体没有 VL 结构域,只有 VH 结构域的较小子集 (VHH)。尽管如此,它们仍以高度稳定而闻名。这种固有的稳定性使纳米抗体能够在野外条件下发挥作用,包括极端的温度和湿度。它们可以在高达 176°F 的温度和极端 pH 值下保持功能(结合其目标分子)。与普通抗体相比,纳米抗体的其他优势包括更容易生产且更便宜。
“与上述两种方法相比,我们提出的方法有两个主要优势,”帕特奈克说。“首先,我们提出的方法与飞行条件无关,而燃料冷却或冲压空气冷却则取决于飞行条件。燃料提供的冷却量取决于发动机所需的燃料量,并且会随着飞行时间的延长而减少。同样,冲压空气提供的冷却量取决于其温度和流量,而这又取决于飞行条件,”帕特奈克说。
