摘要:本文使用文本分析在1967 - 2018年期间为110个国家 /地区的110个国家 /地区构建一个连续的财务压力指数(FSI)。它依赖于计算机算法以及人类专家的监督,因此很容易更新。新指标具有更大的国家和时间覆盖范围和更高的频率,而侧重于发达经济体的类似措施。及其补充了现有的二元时间表,因为它可以评估金融危机的严重性。我们使用该指标来评估财务压力对经济的影响,同时使用国家和公司级别的数据。我们的主要发现是五倍:i)与现有文献一致,我们在财务压力与产出之间表现出具有经济意义和持久的关系; ii)在新兴市场和发展中的经济体中以及(iii)对更高水平的财务压力中的影响更大; iv)我们通过构建一种新颖的工具(来自其他国家 /地区的财务压力)来处理同时因果关系,并使用文本分析中的信息来处理,并表明,虽然有明确的证据表明金融压力会损害经济活动,但OLS估计却倾向于高估这种效果的幅度; (iv)我们通过差异性练习确认财务压力的外在影响,并表明对财务上更具限制和盈利较低的公司的影响更大。
双(氟磺酰基)酰亚胺阴离子 (FSI − )、AlCl 4 − 和 (BrCl) n − 已被研究作为石墨插层化合物 (GIC) 的插层剂。[3] 由于电池结构简单,DIB 已从 Li [4] 扩展到 Na、[5] K、[6] Mg、[7] Ca、[8] 和 Zn 离子 [9] 体系。与有机或离子液体电解质不同,具有高安全性和低成本特点的水系电解质近年来正在蓬勃发展。[3f,10] 尽管已经取得了重大进展,但 DIB 面临的关键挑战在于设备级的低能量密度。以前提高 DIB 能量密度的尝试主要依靠使用浓电解质 [6,11] 来降低非活性溶剂的重量比。然而,只有在超高浓度下才能动力学抑制正极侧的阳极腐蚀。当 DIB 充电过程中消耗掉大部分电解质时,稳定性问题仍然存在。金属阳极的镀层剥离效率也在很大程度上取决于浓缩电解质下形成的钝化界面。在之前的 DIB 原型中,总是需要过量的金属阳极和电解质。最近,开发了“无阳极”锂金属电池概念,使用非活性基质作为集流体,[12] 这比锂金属更安全、更方便,而且
bis(氟磺磺酰基)伊映阴离子(FSI-),Alcl 4-,(BRCl)N-被探索为石墨互构化合物(GICS)的石墨互相中的介体物种。[3]由于直接电池配置,DIB已从Li [4]扩展到Na,[5] K,[6] mg,[7] Ca,[8],[8]和Zn Ion [9]系统。与有机或离子液体电解质不同,近来具有高安全性和低成本的水性电解质最近正在经历蓬勃发展的发育。[3F,10]尽管已经取得了显着的进展,但与DIB相关的关键challenge位于设备级别的低能量密度。以前的尝试增加了DIB的能量密度主要依赖于使用浓缩电解质[6,11]来减少非活性溶剂的重量比。然而,在超高集中,阴极侧的阳极污染只能在动力学上抑制。在DIB充电期间大多数电解质被计算时,这仍然是一个稳定问题。金属阳极的镀层效率也很大程度上取决于在浓缩电解质下形成的钝化相间。在先前的DIB原型中,始终需要过量的金属阳极和元素。最近,使用非活动基板作为当前收集器[12]开发了“无阳极” Li-Metal电池概念,它比Li Metal都更安全,更方便
进行了一项研究,研究了无人机螺旋桨的设计,制造和绕过。使用计算设备发现不同螺旋桨设计的精简质量,该软件被利用。制造了一种具有这种机制的迷你夏令螺旋桨,并且进行了试验证实了它们的成功。虽然多材料方法会以强度减轻轻度,但耐用性将是该过程中最弱的联系。具有重量和简化的故障,脆弱性始终是一个因素。此评估应有助于对当前的无人机推进系统进行大修,例如耐用性和效率,以提高性能并增加持久性。通过使用PLA,ABS和PGA打印材料打印零件,使用FSI系统使用风扇和压力因素来研究气流模式。空气是在材料上引导的,模拟了实际飞行,以评估材料的强度。无人机DJI Mini 3 Pro进行了速度和最大高度的实验测试。Mini 3 Pro中风扇的高度可能会更高,最大速度为37.3 km/h,在Mini 2 Pro中,关于这一方面的速度将为187米。ABS材料的速度比PGA材料高。事实证明,3个Pro螺旋桨风扇的最高推力为5.1 m/s的最高速度,这与仅测量3.2 m/s的2个Pro Propeller风扇不同。3次经历0.155 mm失真,而2个产生0.103 mm。PLA材料在所有人之间的影响价值最小。
Acronyms and Abbreviations B BEVT Blue Economy Valuation Toolkit C CMLRE Centre for Marine Living Resources and Ecology CMFRI Central Marine Fisheries Research Institute CMPA Coastal & Marine Protected Areas CMSP Coastal Marine Spatial Planning CPCB Central Pollution Control Board CRZ Coastal Regulatory Zone CSIR Council of Scientific & Industrial Research D DO Dissolved Oxygen E EEZ Exclusive Economic Zone ES Ecosystem Services ESCAP United Nations Economic and Social Commission for Asia and the Pacific EUNIS European Nature Information System F FSI Forest Survey of India G GDP Gross Domestic Product GET Global Ecosystem Typology GIF Global Indicator Framework GOAP Global Ocean Accounts Framework GoI Government of India GSI Geological Survey of India H HTL High Tide Line I IAEG-SDGs Inter-agency and Expert Group on Sustainable Development Goal Indicators ICMBA Important Coastal and海洋生物多样性地区IOC-UNESCO政府间海洋学委员会联合国教科文组织印度国家海洋信息服务中心ISRO印度空间研究组织IUCN国际自然保护工会IUU非法,不受监管的,未报告的K KM KM KM KM 2平方公里2平方公里
g-band振荡(GBO)是由快速加速的中间神经元(FSI)生成的,对于认知功能至关重要。异常,并且与认知障碍密切相关。但是,基本机制知之甚少。研究GBO在离体制备中的GBO由于需求量很高而具有挑战性,并且需要连续的牛至递送到组织。结果,通常会在非常年轻的动物或最大化氧气供应但妥协空间分辨率的实验设置中研究GBO。因此,对GBO在不同的大脑结构内部和不同动物中的脑组织之间的相互作用有一个深刻的了解。为了解决这些局限性,我们开发了一种新的方法,用于使用60频道的,穿孔的微电极阵列(PMEAS)研究成熟动物的离体海马切片中的GBO。pmeas增强了电生理记录中的氧气递送并增加了空间分辨率,从而实现了离散大脑结构内GBO同步的全面分析。我们发现,在海马内的神经途径上横断了Schaffer侧支,损害了CA1和CA3子场之间的GBO相干性。此外,我们通过研究表现出抑制性突触功能障碍的ANK3突变小鼠模型中的GBO相干性来验证我们的方法。我们发现,在这些突变小鼠的CA3子场中,GBO相干性保持完整,但在CA1子场内和之间受损。总体而言,我们的方法具有表征Animal模型的离体脑部切片中GBO的巨大潜力,从而增强了我们对精神疾病中网络功能障碍的理解。
AEs Advanced economies AUROC Area under the receiver operating characteristic curve CAB Current account balance CAR Capital adequacy ratio CBU Central Bank of Uzbekistan CCoB Capital conservation buffer CCyB Countercyclical capital buffer CoVaR Conditional value at risk DSR Debt service ratio ELA Emergency liquidity assistance EMs Emerging markets EWI Early warning indicator FDIC US Federal Deposit Insurance Corporation FED US Federal Reserve System FGDCB Fund for guaranteeing deposits of citizens in banks FSI Financial stress index GARCH Generalized autoregressive conditional heteroskedasticity GDP Gross domestic product GSADF Generalized supremum augmented Dickey-Fuller HHI Herfindahl-Hirschman index HLA Highly liquid assets HP Hodrick-Prescott IMF International Monetary Fund JSC Joint-stock company LCR Liquidity coverage ratio LTV Loan-to-value MSCI Morgan Stanley Capital International NGFS Network of Central Banks and Supervisors for Greening the Financial System NSFR Net stable funding rate ratio OLS Ordinary least squares PTI Payment-to-income ROA Return on assets ROC Receiver operating characteristic curve ROE Return on equity RWA Risk-weighted assets SIB Systemically important banks SSM State-space model SyRB Systemic risk buffer UCI乌兹别克斯坦综合索引USD美国美元UZS UZBEK SOUM VAR AF PRIGAT AS IAM AS IAG
Pretoria大学Schalk Kok教授,“替代建模的最新进展”摘要Schalk Kok教授将对替代建模的个人观点展示。 他已经从事代理模型工作了近三十年。 他的第一次接触替代模型发生在1996年的硕士研究期间,当时他使用多项式替代物代替了瞬时的热弹性有限元模型。 下一步在2009年遇到了代孕,他参与了网状运动项目。 径向基函数用于在流体结构相互作用(FSI)求解器中移动流体网格。 最近(2022-2024),Kok教授和Nico Wilke教授监督博士生Johann Bouwer,以发展近乎最佳的梯度增强了代理人。 特定值得注意的是开发数据预处理步骤,该步骤使用缩放和旋转来转换数据集。 目的是将数据集转换为更多各向同性,这使得径向基函数替代(由各向同性基函数的求和组成)更有可能准确地近似数据。 Schalk Kok教授是机械工程领域的经验丰富的学者,目前是比勒陀利亚大学机械和航空工程系的教授兼负责人。 目前,他还被任命为EBIT教师工程学院主席。 Kok教授完成了他的B.Eng。 和M.Eng。 Kok教授的专业旅程跨越了学术界和应用研究。Pretoria大学Schalk Kok教授,“替代建模的最新进展”摘要Schalk Kok教授将对替代建模的个人观点展示。他已经从事代理模型工作了近三十年。他的第一次接触替代模型发生在1996年的硕士研究期间,当时他使用多项式替代物代替了瞬时的热弹性有限元模型。下一步在2009年遇到了代孕,他参与了网状运动项目。径向基函数用于在流体结构相互作用(FSI)求解器中移动流体网格。最近(2022-2024),Kok教授和Nico Wilke教授监督博士生Johann Bouwer,以发展近乎最佳的梯度增强了代理人。特定值得注意的是开发数据预处理步骤,该步骤使用缩放和旋转来转换数据集。目的是将数据集转换为更多各向同性,这使得径向基函数替代(由各向同性基函数的求和组成)更有可能准确地近似数据。Schalk Kok教授是机械工程领域的经验丰富的学者,目前是比勒陀利亚大学机械和航空工程系的教授兼负责人。目前,他还被任命为EBIT教师工程学院主席。Kok教授完成了他的B.Eng。 和M.Eng。 Kok教授的专业旅程跨越了学术界和应用研究。Kok教授完成了他的B.Eng。和M.Eng。Kok教授的专业旅程跨越了学术界和应用研究。Kok教授的专业旅程跨越了学术界和应用研究。比勒陀利亚大学的学位,然后是博士学位。在伊利诺伊大学Urbana-Champaign大学,得到包括富布赖特奖在内的著名奖学金的支持。从2003年到2009年,他在2009年至2013年的科学与工业研究委员会(CSIR)工作,并于2013年返回比勒陀利亚大学。自返回UP以来,他的研究集中在计算固体力学和材料建模上,这是有限元分析和材料参数识别等领域的。他的贡献也扩展到了专业服务,包括在南非理论和应用机械师协会(SAAM)中的领导角色。他是Saam的前任总裁,连续三年任职(2010-2016)。
Bartelso Bottoms 站点是 UMBPI 提议的第三个银行站点。如果获得批准,赞助商将向寻求满足购买补偿缓解信用以抵消水生功能和服务损失的要求的陆军部许可证持有者提供湿地缓解信用。缓解银行站点包括恢复未受保护的卡斯卡斯基亚河洪泛区内的多个湿地栖息地。银行站点的大部分由水成土壤组成,位于卡斯卡斯基亚河的洪泛区内。湿地生物学家对湿地站点进行了评估,确定土壤主要是水成土壤,耕种部分是以前改造的农田区域。银行站点将开发多种类型的栖息地特征:底地硬木桅杆生产橡树/山核桃森林栖息地,以及水文和水质湿地功能。植被类型将遵循现有和即将创建的海拔梯度。 Forrest Keeling Nursery RPM 树木将用于促进银行场地的森林部分,这将全年支持各种草本植物,并可能支持卡斯卡斯基亚河沿岸的迁徙和特有湿地物种。银行场地现有森林面积约为 25.72 英亩。赞助商提议在现有森林中完成林地改良 (FSI)。FSI 将使用链锯对不受欢迎或低 C 值物种(枫树、北美枫杨和绿梣)进行双环剥,并在留下的树冠空隙中种植集装箱橡树和山核桃树,从而增加树种多样性并提高整体植物区系质量指数评级。这些空隙(该森林面积大于 0.25 英亩)将根据需要以每英亩约 10-20 棵树的速率种植硬橡树和山核桃树作为再生部分。这些森林管理活动将提供更好的野生动物栖息地和其他林业效益,以改善和促进更健康、更可持续的森林生态系统。河岸遗址的水文状况将得到改善,以延长持续时间并利用现有水文状况创造微栖息地。该地区的水文图由自然和管理的水控制决定。河岸遗址受美国陆军工程兵团圣路易斯区管理的卡斯卡斯基亚河 - 卡莱尔湖水控制管理曲线的影响。其次,圣达菲排水沟将河岸的西段一分为二,提供了额外的水文条件,特别是当当地排水和堤坝区排水时。最后,河岸遗址受来自卡斯卡斯基亚河及其支流的明流影响,包括 Crooked Creek 和 Shoal Creek,它们的交汇处和洪泛区位于河岸遗址两英里半径范围内。河岸遗址的水文状况旨在反映现有的水文状况,通过建造土丘和改造排水系统,河岸遗址的微生境将改善水文状况并延长饱和时间。目前的计划将导致在溪流走廊附近重新建立多样化的低地硬木森林,以增强卡斯卡斯基亚流域的生态功能和价值。如有要求,我们的办公室可以提供一份 Bartelso Bottoms 缓解河岸计划的副本。本缓解河岸计划并不排除任何第 404 条许可证申请人(他们打算或被要求使用此缓解项目产生的湿地或溪流信用)遵守《清洁水法》第 404(b)(1) 条准则、《国家环境政策法》以及我们对可能对公众利益产生的影响的评估。同样,当对美国水域的影响无法实际避免或进一步最小化时,美国陆军工程兵团致力于通过实施现行监管指导和最佳专业判断来确定补偿性缓解措施,首先考虑现场或直接子流域内的缓解机会。位置图和图纸:见附件。
AToN 助航设备 CPA 宿务港务局 COLREG 国际海上避碰规则 DA 农业部 DENR 环境与自然资源部 DICT 信息和通信技术部 DOST 科学技术部 DOTr 交通部 DND 国防部 MARINA 海事局 PAGASA 菲律宾大气、地球物理和天文服务管理局 FSI 船旗国实施 GISIS 全球综合航运信息系统 GMDSS 全球海上遇险和安全系统 ICS 国际航运公会 IALA 国际航标与灯塔管理局协会 IHO 国际水文组织 III 规则 IMO 仪器实施规则 IMDG 国际海上危险货物规则 IMO 国际海事组织 IMSAS 国际海事组织成员国审计机制 ISO 国际标准化组织 KPI 关键绩效指标 MAIIF 海事事故调查员国际论坛 MARPOL 国际防止船舶污染公约 MIDP 海事产业发展计划 MSI 海上安全调查 NAMRIA 国家测绘和资源信息机构 NTC 国家电信委员会 PCG 菲律宾海岸警卫队 PN 菲律宾海军 PPA 菲律宾港务局 PSC 港口国管制 PSCO 港口国管制官员 MRCC 海上救援协调中心 MRSC 海上救援分中心 RO 认可组织 SAR 搜救 SBMA 苏比克湾大都会管理局 SOLAS 国际海上人命安全公约 STCW 海员培训、发证和值班标准国际公约 TSS 分道通航制 VTS 船舶交通系统